SELEZIONEE DITECNICHE ELETTRONICHE

GENNAIO 1984

L. 3.000

- SPECIALE: Regolatori di potenza
- Convertitori A/D sul bus dei microprocessori

TEK 2200 OSCILLOSCOPI

LO STANDARD PRESTAZIONI/PREZZO

Ampia gamma di sensibilità verticali

Fattori di scala da 100 V/div. (sonda x 10) a 2 mV/div. (sonda x 1). Precisione ± 3 %. Accoppiamento c.c. e c.a.

Due canali ad alta sensibilità

Banda passante dalla c.c. a 60 MHz da 10 V/div. a 20 mV/div.; 2 mV/ div. dalla c.c. a 50 MHz.

Velocità di scansione

Da 0,5 s a 50 ns. Fino a 5 ns/div. con l'espansore x 10.

Misure con scansione ritardata

Precisione ± 3 % con la singola base tempi (mod. 2213); ± 1,5 % con la doppia base tempi (mod. 2215).

Completo sistema di trigger

Le modalità disponibili sono: quadro TV, normale, automatico, con selezione CH1, CH2 od entrambi. Sorgente interna, esterna e rete. Holdoff variabile.

Sonde comprese

Due sonde x 10. L'intera banda passante di 60 MHz è disponibile sul puntale delle sonde stesse.

pronto, Tektronix

Basta una telefonata

Mai è stato così facile avere un oscilloscopio Tektronix. Basta infatti una semplice telefonata per ordinare un oscilloscopio TEK 2213 o 2215 e riceverlo direttamente al vostro domicilio completo di sonde, manuali di impiego e di servizio.

Pronta consegna

Gli oscilloscopi TEK 2213 e 2215 non solo sono facili da ordinare ma anche rapidi da ottenere. Infatti, solo per questi modelli la Tektronix ha deciso di offrire la pronta disponibilità presso i suoi uffici commerciali in tutto il mondo.

Affidabilità alta, prezzo basso

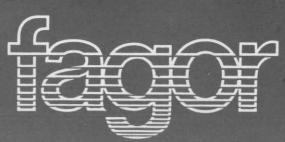
L'attenta progettazione e la razionalizzazione della produzione ha

permesso non solo di ottenere strumenti più affidabili, ma anche di contenere i costi. Questo ha portato un beneficio immediato ai clienti Tektronix: il basso prezzo. Gli oscilloscopi TEK serie 2200 sono infatti offerti ad un prezzo estremamente competitivo specie se valutato rispetto a quanto questi strumenti offrono in fatto di prestazioni, affidabilità e durata di garanzia.

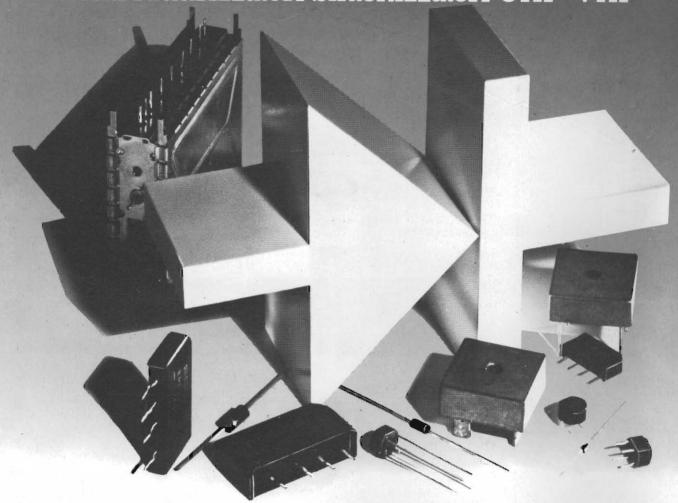
TEK 2213 - Lire 1.990.000* Sweep ritardato

TEK 2215 - Lire 2.400.000* Doppia base tempi

*Compresi il coperchio frontale e due sonde. IVA esclusa - Prezzi indicativi causa fluttuazione cambi


Garanzia totale di 3 anni

La realizzazione di questi oscilloscopi, particolarmente studiata sotto il profilo dell'affidabilità, ha permesso alla Tektronix di offrire, per la prima volta in questo settore industriale, una garanzia completa di tre anni comprensiva sia di parti (incluso il CRT) che di manodopera.


TEKTRONIX S.p.A.

20141 MILANO Via Lampedusa 13 - Tel. (02) 8466446 00141 ROMA P.za Antonio Baldini 45 - Tel. (06) 8278041 10141 TORINO Via Card. M. Fossati 5 - Tel. (011) 3351143

Diodi-Diodi veloci-Diodi Zener Ponti raddrizzatori Sintonizzatori UHF-VHF

Diodi raddrizzatori

1,0 A	Serie 1N4000
1,5 A	Serie 1N5391
3,0 A	Serie 1N5400
3,0 A	Serie BY250
5,0 A	Serie BY550

Diodi raddrizzatori veloci

I,U A	Serie BA150	
1,0 A	Serie 1P640	
1,0 A	Serie 1N4933	
2,0 A	Serie BY290	
3,0 A	Serie BY390	
3,0 A	Serie MR850	

Sample Simo

Corso Magenta, 56 - 20123 MILANO Tel. (02) 8052157-808528

Diodi zener

0,4 W	Serie 1N751	(5,1 V	÷ 12 \
0,4 W	Serie 1N957	(6,8 V	÷ 33 \
0,5 W	Serie ZPD	(2,7 V	÷ 33 V
0,5 W	Serie BZX55C	(5,1 V	÷ 33 V
0,5 W	Serie BZX83C	(5,1 V	÷ 33 V
0,5 W	Serie BZY88C	(5,1 V	÷ 33 V
0,5 W	Serie 1N5231	(5,1 V	÷ 33 V
1,0 W	Serie 1N4733	(5,1 V	÷ 33 V
1,3 W	Serie BZX85C	(5,1 V	÷ 33 V
1,5 W	Serie BZY97C	(7,5 V	÷200 V
5,0 W	Serie 1N5345	(8,7 V-	÷ 33 V

Diodi zener bidirezionali

Seriez ZZ (13 V÷200 V)

Sintonizzatori UHF/VHF Sistema CCIR

Sistema OIRT Sistema RTMA Sistema Francese Altri standard su richiesta

Ponti raddrizzatori

0.0000000000000000000000000000000000000	
0,8 A	Serie C800
1,0 A	Serie C1000
1,0 A	Serie WLF
1,5 A	Serie C1500R
1,5 A	Serie WF
1,5 A	Serie C1500/1000
2,0 A	Serie C2000/1500
3,7 A	Serie C3700/2200
5,0 A	Serie C5000/3300
10 A	Serie FB10, FB10L
25 A	Serie FB25 FB251

35 A Serie FB35, FB35L

Distributori

A.E.P., s.r.l. - Via Terracina, 311 NAPOLI - Tel. (081) 630006 ALTA s.r.l. - Via M. di Giovanni, 6 FIRENZE - Tel. (055) 714502 COMPREL s.r.l. - Viale F. Testi, 115 CINISELLO B. (MI) - Tel. (02) 6120641/5

EL.CO. s.r.l. - Via Caffaro, 135 ROMA - Tel. (06) 5135908 JOHNVOX - P.le dei Cappuccini, 2 RECANATI (MC) - Tel. (071) 9841056 PROSEM s.r.l. - Viale E. Fermi, 29 MONZA (MI) - Tel. (039) 834388 REDIST - Divisione G.B.C. - Viale Matteotti, 66 CINISELLO B. (MI) - Tel. (02) 6181801 TREB.S - Via S. Bartolomeo del Fossato, 123-9 GENOVA - Tel. (010) 258239 A. ZANIBONI - Via Zanardi, 378/3° BOLOGNA - Tel. (051) 376653

EDITORE

DIRETTORE RESPONSABILE Ruben Castelfranchi

DIRETTORE TECNICO Lodovico Cascianini

COORDINATORE

REDATTORE Sergio Cirimbelli

FOTOGRAFIA Luciano Galeazzi Tommaso Merisio

PROGETTAZIONE ELETTRONICA Angelo Cattaneo Filippo Pipitone

CONTABILITA'
Claudia Montù
M. Grazia Sebastiani
Orietta Duroni

DIFFUSIONE E ABBONAMENTI Pinuccia Bonini Rosella Cirimbelli Patrizia Ghioni Giovanna Quarti

COLLABORATORI
Paolo Bozzola
Ennio De Lorenzo
Fabio Ghersel
Vincenzo Parenti
Maurizio Morini
Oscar Prelz
Sergio Saporiti
Edoardo Romano

PUBBLICITA'
Concessionario per l'Italia e l'Estero
SAVIX S.r.l.
Tel. (02) 6123397

Concessionario per USA e Canada: International Media Marketing 16704 Marquardt Avenue P.O. Box 1217 Cerritos, CA 90701 (213) 926-9552

DIREZIONE, REDAZIONE, AMMINISTRAZIONE Via dei Lavoratori, 124 20092 Cinisello Balsamo - Milano Tel. (02) 61.72.671 - 61.72.641

SEDE LEGALE Via V. Monti, 15 - 20123 Milano Autorizzazione alla pubblicazione Trib. di Monza n. 239 del 17.11.73

FOTOCOMPOSIZIONE Lineacomp s.r.l. Via Rosellini, 12 - 20124 Milano

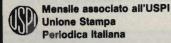
STAMPA Gemm Grafica s.r.l. Via Magretti - Paderno Pugnano (Mi)

DIFFUSIONE
Concessionario esclusivo
per l'Italia e l'Estero:
SODIP - Via Zuretti, 25 - 20125 Milano
V. Serpieri, 11/5 - 00197 Roma

V. Serpieri, 11/5 - 00197 Roma

Spediz. in abbon. post. gruppo III/70

Prezzo della Rivista L. 3.000 Numero arretrato L. 4.000


Abbonamento annuo L. 29.000 Per l'estero L. 49.000

I versamenti vanno indirizzati a: JCE Via dei Lavoratori, 124

Via dei Lavoratori, 124 20092 Cinisello Balsamo - Milano mediante l'emissione di assegno circolare cartolina vaglia o utilizzando il c/c postale numero 315275

Per i cambi d'indirizzo allegare alla comunicazione l'importo di L. 500, anche in francobolli, e indicare insieme al nuovo anche il vecchio indirizzo.

 Tutti i diritti di riproduzione e traduzione degli articoli pubblicati sono riservati.

In copertina:

Il Digital Scope Multimeter M 2050 della Metrawatt un nuovo strumento portatile nel quale sono concentrate le funzioni di multimetro digitale, oscilloscopio digitale e registratore di fenomeni transitori.

Sommario

GENNAIO 1984

NEWSLETTER	6
COMPONENTI Nuovi integrati per il controllo della potenza da rete monofase Transistori SIPMOS - Tecnologia e caratteristiche	10 14
REGOLAZIONI & CONTROLLI SIPMOS per regolare la velocità di un motore c.c. Regolatori di potenza con TLB 3101/02	18 25
RADIORICEVITORI Ricevitore F.M. completo su chip	42
PROGETTI Tastiera elettronica con dispositivo di priorità - Temporizzatore programmatore senza contatti - Generatore di segnali video per laboratorio ed assistenza TV - I parte - Contatore di Geiger - Mueller per la misura della radioattività - Frequenzimetro digitale semplificato - Circuito di protezione per strumenti ad indice - Generatore di funzioni vobulato. Il parte	50
NUOVE TECNOLOGIE Sempre verso il più piccolo una grande rivoluzione è in atto nel mondo dell'elettronica	68
STRUMENTAZIONE Oscilloscopio digitale più multimetro: tre strumenti in uno	72
TV DA SATELLITE In diretta sui satelliti - I parte	78
HARDWARE Convertitore A/D sul bus dei microprocessori	90
IDEE DI PROGETTO Interruttore statico di potenza da 500 A - Interruttore di crepuscolo con sensibililità da 10 fino a 10⁴ lux - Interruttore statico 400 V/A, realizzato con il C.I. UAA 4002 - Circuito di comando di un LED alimentato a 24 V	93
AUDIO Numerose applicazioni per il TDA 7000	98 104
NUOVI PRODOTTI	104

Videotel: i vari "colli di bottiglia"

A lla fine dello scorso novembre, ad un anno circa dall'inizio del servizio Videotel, gli utenti serviti dalla Sip erano circa 1350 (85% affari e 15% domestici), con possibilità di accesso a 350 banche dati per complessive 55.000 pagine di informazioni. Nella fase di pre-servizio, che presumibilmente durerà fino al 1985, si pensa di allacciare altri 1500-2000 utenti, per cui al termine della sperimentazione questi saranno 3000-3500. Nel corso del 1985 partirà il servizio effettivo, che si svilupperà in due fasi successive: nella prima, di 3-5 anni, si porterà la potenzialità del sistema a 250.000 utenti, raggiungendo tutte le prime 20-30 città (con una incidenza dell'utenza affari del 70%), mentre nella seconda fase, prevista per la fine degli anni 80, si pensa ad una estensione totale del sistema. Dal punto di vista ingegneristico il Videotel non presenta più grossi problemi dopo l'approvazione, da parte del CEPT, di uno standard europeo che con opportuni adattamenti consente di usare tutti e tre i sistemi (alfamosaico, alfageometrico ed alfatografico). La "giungla dei protocolli" ha però ritardato l'impegno nella produzione dei terminali; basta pensare che ancora oggi il rapporto di prezzi fra un terminale alfamosaico (più economico) e uno in tecnica alfageometrico è di 1 a 10 (qualche tempo fa era addirittura di 1 a 40), e il gestore pubblico ha avuto notevoli difficoltà a reperire i terminali. Infatti dopo una prima offerta di una quarantina di imprese operanti nella TV, solo tre aziende italiane (Olivetti, Zanussi e Celint), oltre alla Philips, si sono dichiarate disponibili a produrre i primi pezzi per il mercato sperimentale. La vera difficoltà che incontra il Videotel è quella di reperire gli investimenti necessari per fornire le banche dati.

Home computer: perchè la TI ha desistito

La Texas Instruments ha sospeso la produzione del 99/4A ed è uscita ufficialmente dal mercato degli home computer dopo aver preso atto delle pesanti perdite provocate da questa attività. Gli home computer sono infatti i maggiori responsabili dei 451 milioni di dollari andati in fumo nei primi nove mesi del 1983, perdita dimezzata in bilancio a 222,9 milioni grazie solamente a riprese fiscali. Anche il fatturato ne ha risentito ed è risultato pari a 3.280 milioni di dollari, con una flessione del 2% nei confronti dei corrispondenti 9 mesi '82. La società si è però impegnata a continuare il supporto dei computer 99/4A e per vuotare i magazzini ha anche deciso di concedere forti sconti, per altro già conteggiati in bilancio. Ingloriosa fine per un sistema che avrebbe dovuto dominare il mercato dell'informatica domestica. Al suo debutto, nel 1979, il 99/4 aveva un prezzo al dettaglio di 650 dollari, ridotto nel 1981 a 350 dollari dopo averlo ridisegnato e ribatezzato 99/4A. Punto focale della strategia commerciale della TI, anche dopo le revisioni, è sempre stato quello della riduzione dei prezzi per una quota di mercato più ampia, politica che ha probabilmente contribuito ad allargare il cerchio degli utilizzatori di home computer a scapito di non poche difficoltà per i produttori. Il prezzo del 99/4A è sceso nel 1982 sotto i 100 dollari, ma senza contribuire a fare smaltire tutti i sistemi che la società produceva per un errore di sopravalutazione della capacità di assorbimento.

<u>Satelliti televisivi: programmi ritardati</u>

R upert Murdoch, il magnate australiano dell'editoria, ha deciso di rinviare di un paio di anni il progetto di "satellizzare" televisivamente gli Stati Uniti con la creazione di una rete formata da 5 satelliti, di un costo abbondantemente superiore ai 100 miliardi di lire. Il rinvio è stato motivato con la volontà di integrare nella rete quelle tecnologie la cui messa a punto è di questi mesi. Inoltre si vocifera che Murdoch sarebbe alla ricerca di altri partner da coinvolgere nell'iniziativa per gli elevati investimenti e le altrettante elevate perdite previste nei primi anni di esercizio.

Videogiochi: nuove proposte della RCA

La RCA non a vinto la sua importante scommessa di questo decennio: a tre anni di distanza dalla introduzione del videodisco le vendite hanno avuto un andamento nettamente inferiore alle previsioni. La RCA prevedeva di vendere 500.000 modelli di questo apparecchio nel primo anno di introduzione e quantitativi più consistenti negli anni successivi. Invece si dovrà attendere la fine del 1983 per raggiungere l'obiettivo dei 500.000 lettori di videodischi dopo avere introdotto modelli più avanzati. Il videodisco avrebbe dovuto diventare, secondo i programmi della RCA, il prodotto elettronico di consumo a più larga diffusione degli anni ottanta e invece, fino ad ora, esso ha comportato alla società americana perdite per oltre 400 miliardi di lire nel periodo 79/82 e fino al 1985 ne provocherà altre. Per cercare di correggere l'andamento distorto la RCA ha recentemente lanciato un nuovo modello e ha provveduto ad aumentare i titoli dei videodischi disponibili, che ora superano i 1.500. Il nuovo apparecchio è un lettore interattivo o a accesso casuale, perchè può essere programmato per permettere istantaneamente l'individuazione di un qualsiasi segmento del disco ed inoltre può essere collegato ad un home computer per la memorizzazione, nonchè venire adibito ad altre applicazioni di tipo domestiche nelle aree dell'insegnamento e del divertimento. Il suo costo è di circa 500 dollari.

Lo Spectrum all'attacco della Francia

L o ZX Spectrum, il piccolo personal computer della Sinclair Research, sta incontrando i favori del pubblico francese, al quale la società inglese ha venduto fino a oggi più di 132.000 ZX81. Per promuovere lo Spectrum, la Sinclair ha stipulato un accordo con la Cie Générale des Constructions Téléphoniques che costruirà gli adattatori Peritel necessari a connettere il micro al televisore domestico.

Il mercato dei "New media"

I "new media" sono TV interattiva, home computing, sistemi di alta fedeltà. Il Giappone intravede ottime chances e ha deciso di buttarsi a capofitto sui nuovi servizi e quindi sulla produzione delle necessarie apparecchiature di sostegno. In questo momento il Giappone sta sperimentando un servizio pubblico di teletext strutturato in 8 canali di cui alcuni di carattere nazionale. Il sistema, gestito dalla NHK (l'ente televisivo dello stato), ha una capacità di 5,727272 megabits per secondo, relativamente lenta comparata ai sistemi occidentali ma in compenso in grado di trasmettere complessi ideogrammi e forme grafiche. L'obiettivo del progetto è di sperimentare un sistema ibrido di trasmissione per arrivare fra 10 anni ad una trasmissione di 400-800 programmi teletext su un singolo canale.

L'esperimento interessa le città di Osaka e di Tokyo e le aree circostanti per un totale di circa 16 milioni di utenti TV che, previo acquisto di un adattatore, in vendita a 400-500 dollari, possono accedere al servizio. Il mercato giapponese dei "new-media" viene stimato dalla Nomura Research Institute in 11 miliardi di dollari nel 1990.

A 76 miliardi il fatturato della Autovox

L a Autovox ha realizzato nel 1982 un fatturato di 75,7 miliardi di lire (il valore comprende anche le vendite della Autovox-TV incorporata all'inizio del 1982) e una perdita di 313 milioni di lire. La società romana, che è al centro di un aggrovigliato programma di ristrutturazione, ha a libro paga 1.700 persone, circa. A fine '82 gli immobilizzi tecnici lordi erano iscritti in bilancio per 38,4 miliardi di lire a fronte di un capitale di 3.260 milioni di lire. Nel 1981 il fatturato era assommato a 42,4 miliardi (non può essere raffrontato al valore '82 per il motivo suddetto) e la gestione aveva evidenziato un utile di 193 milioni.

MINI o PORTATILI

gli oscilloscopi pone strurtatilità no Hitachi menti che la compongono, il V-209 e il V-509 sono caratterizzati da 20 e, rispettivamente, 50 Mhz di

Il vostro lavoro vi impone stru-menti con doti di portatilità notevoli?

Scegliete allora con sicurezza nella gamma dei portatili Hitachi. Sono sei modelli con banda passante da 15, 20, 30, 35, 50 e 100 Mhz, a doppia traccia (il 100 Mhz ha quattro tracce), sensibilità

verticale di 1 mV/div. e con moltissime altre caratteristiche di avanguardia: trigger automatico e manuale, TV line e field, somma e sottrazione dei canali, linea di ritardo verticale a partire dal 30 Mhz e velocità di sweep di 20 ns (5 ns per il 50 Mhz con doppia base tempi e trigger view e 2 ns per il 100 Mhz, anch'esso con doppia base tempi). Tutti offrono un MTBF di 20.000 ore.

Vi occorre un oscilloscopio veramente compatto e leggero, da usare senza problemi nel lavoro di field più impegnativo?

Uno strumento in grado di darvi prestazioni ottime e con magnifiche caratteristiche di

banda passante, sensibilità di 1 mV/div., velocità della significano

base tempi di 10 ns/div., base tempi ritardata con trigger separato dalla principale. circuito separatore di sincronismi TV. focalizzatore auto-

matico della traccia, single sweep e hold off. Tutte queste caratteristiche e dispositivi sono raccolti in un contenitore di appena 25 centimetri di larghezza, 35 di profondità e solo 11 di altezza, con un peso totale di meno di 5 chili e un'autonomia di 2 ore di funzionamento continuo con il power pack opzionale AD-509. E con un MTBF di ben 20.000 ore.

20135 Milano - Via Colletta 37 - tel. 57941 Filiali, agenzie e punti vendita in tutta Italia

Toshiba produrrà VTR/VHS in Europa

T oshiba ha annunciato che a partire da aprile produrrà in Gran Bretagna videoregistratori utilizzando il sistema VHS. La società non intende comunque abbandonare lo standard Beta che, continuerà ad essere venduto negli Usa ed in Giappone, mentre gli apparecchi VHS saranno destinati esclusivamente all'Europa. La loro produzione avverrà nello stabilimento inglese di Plymouth, attualmente impiegato nel montaggio di TV color. Una volta a pieno regime, l'impianto dovrebbe produrre 10 mila video registratori al mese, che saranno venduti inizialmente in Gran Bretagna, e nel giro di un anno, in Germania, Svizzera e in altri Paesi europei. L'adozione del sistema VHS (sviluppato dalla Matsushita Electric Industrial) giunge a breve distanza da un'analoga decisione da parte dei due maggiori produttori europei del settore, l'olandese Philips e la tedesca Grundig, e segna un nuovo successo del sistema VHS nella lotta in atto per il controllo del mercato europeo.

Personal: 3.600 milioni di dollari nel 1988

S ulle prospettive di sviluppo del mercato europeo dei personal computer ha realizzato un reportage la Intelligent Electronics Europe, una organizzazione per le ricerche di marketing di Parigi. Il consumo di personal aumenterà in Europa dai 928 milioni di dollari nel 1982, a 3.600 milioni di dollari nel 1988, e a trascinare il mercato saranno i sistemi per applicazioni gestionali, quelli di un costo medio di base di oltre 1000 dollari, per quanto riguarda l'espansione in valore, e i personal computer domestici per quanto riguarda l'espansione numerica. Nel periodo preso a base di riferimento la consistenza di personal complessivamente in funzione aumenterà da 1,183 a 6,111 milioni di unità. Il reportage, che si intitola "European Personal Microcomputer Market 1979 to 1988", prende in considerazione anche la distribuzione del consumo atteso quest'anno fra le diverse marche per i sistemi di un prezzo superiore ai 1000 dollari. Viene confermato che la IBM assumerà entro dicembre la leadership con una quota del 13%, superando sia Apple Computer sia Commodore che a fine 1982 detenevano rispettivamente il 18% e il 17% del mercato. Alla stabile partecipazione della Hewlett-Packard si contrappone un quasi raddoppio della Olivetti (dal 4,5% all'8%) e una buona introduzione della Digital Equipment (6%). La Gran Bretagna è indicata come il singolo Paese con il maggior consumo: in termini di unità fornite la sua quota risulta doppia di quella dei tre Paesi che la seguono. Ciò grazie in primo luogo alla domanda elevata di personal domestici.

CATV: Monaco aspetta

stata rimandata ad aprile la fase sperimentale del progetto TV via cavo per la zona di Monaco. Le motivazioni ufficiali parlano di scarso interesse dimostrato finora sia da parte degli utenti che da parte dell'industria. I mesi mancanti alla data d'inizio verranno utilizzati per migliorare la propaganda del nuovo mezzo e per predisporre i mezzi tecnici necessari al cablaggio di 30/33 mila unità abitative.

In questo modo due terzi delle famiglie di Monaco e dintorni potrebbero prendere parte alla fase sperimentale se ritornerà l'interesse.

Un video-disco italiano

I l videodisco, ora, è un prodotto anche italiano. Lo ha annunciato la Seat-Sarin, società del gruppo Stet, a Bari. Durante la manifestazione, promossa dall'assessorato regionale al turismo della Puglia, sono state illustrate le possibilità di utilizzo del nuovo sistema di comunicazione soprattutto nei settori turistico e alberghiero. Il videodisco è stato prodotto su tecnologia "Laservision" della Philips che consente di riprodurre con tecniche di alta qualità un numero elevatissimo di immagini e di informazioni. Un codice di selezioni delle immagini permette la consultazione in tempi estremamente accelerati del programma.

NUOVI INTEGRATI PER IL CONTROLLO DELLA POTENZA DA RETE MONOFASE

ing. Walter Schumbrutzki, Siemens Elettra S.p.A.

La buona accoglienza che gli operatori nel campo della regolazione della potenza da rete hanno fatto al circuito integrato TLB 3101, ha indotto la Siemens a studiare versioni più semplificate di questo integrato, le quali, pur mantenendo il "cuore" del primitivo integrato (e cioè, regolazione della potenza mediante sistema a parzializzazione di fase), consentissero azionamenti più semplici, più economici e pertanto molto adatti alle apparecchiature consumer. Da qui la nuova famiglia di integrati TLB 3102/3/4.

na prima presentazione del circuito integrato TLB 3101, particolarmente studiato per la realizzazione di sistemi di controllo a parzializzazione di fase della potenza da rete, è stata data nel numero di marzo 1983, a pag. 71 di questa rivista. In questo frattempo la Siemens ha presentato altre interessanti versioni del TLB 3101 che, pur consentendo di realizzare la funzione fondamentale (e cioè controllo della potenza da rete a parzializzazione di fase), mancano di alcune funzioni aggiuntive (e pertanto di alcuni terminali). Questi nuovi integrati sono in compenso molto flessibili, permettono di realizzare sistemi di controllo della potenza con pochi componenti, e sono quindi interessanti dal punto di vista economico.

Le differenze rispetto al "capostipite TLB 3101" sono le seguenti:

TLB 3102: differisce dal TLB 3101 in quanto manca il comparatore K3.

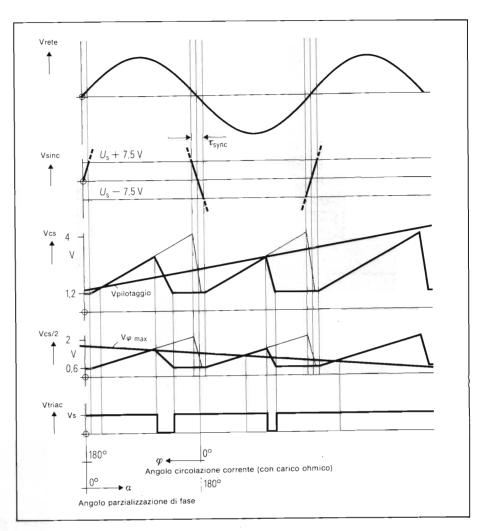
TLB 3103: differisce dal TLB 3101 in quanto viene a mancare l'amplificatore operazionale OP. TLB 3104: differisce dal TLB 3101 in quanto è sprovvisto di K3, di OP, di ingresso E/A, di ingresso Vpilotaggio e ha portato all'esterno il diodo zener (figura 1).

Suggerimenti per l'impiego corretto delle nuove versioni nel caso di carichi ohmici, ohmici/induttivi e puramente induttivi

In figura 1 sono riportate le forme d'onda essenziali dei segnali che interessano il sistema di controllo della potenza a parzializzazione di fase attuato con gli integrati della famiglia del TLB 3101 e un triac.

L'attenzione principale sarà rivolta al meccanismo e alle possibilità di sincronizzazione dell'impulso di comando del triac con la frequenza della tensione della rete; verranno inoltre presentati alcuni circuiti che permetteranno l'allungamento o la ripetizione dell'impulso d'innesco del triac.

1) Il più semplice sistema di controllo della potenza a parzializzazione di fase realizzabile È il circuito proposto (figura 1a) e serve per l'azionamento di carichi ohmici e di motori universali ed è realizzabile con gli integrati TLB 3101...3104. Il massimo angolo di circolazione di corrente ammissibile (φ) va adattato al particolare tipo di motore agendo su P2; in questa maniera sarà evitato che il triac lavori su una sola semionda della tensione della rete. Nel caso il carico fosse di natura puramente ohmica si potrà fare a meno sia di P2 che della rete RC posta in parallelo al triac.


2) Sincronizzazione della corrente e ripetizione dell'impulso d'innesco del triac

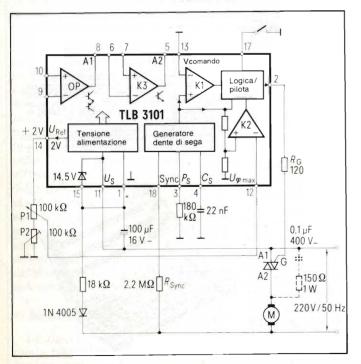

Le osservazioni che faremo in proposito valgono per i c.i. TLBA 3101...3104. Il pericolo che il triac lavori su una sola semionda della rete (comportandosi quindi come un tiristore) esiste effettivamente quando il sistema a parzializzazione di fase viene impiegato per controllare la potenza di carichi induttivi come trasformatori, motori a poli fessurizzati, ecc. In questi casi, il pericolo deriva dal fatto che con questi carichi induttivi ha sempre luogo un note-

Fig. 1 - Forme d'onda essenziali riguardanti il sistema di controllo a parzializzazione di fase della potenza da rete realizzabile con il TLB 3101. Si tenga presente che l'angolo della fase parzializzata (α) può andare da 0 a 180°. Anche l'angolo di circolazione della corrente nel carico (φ) può andare da 0 a 180°. I due angoli rispettivamente α e φ sono inversamente proporzionali nel senso che quando aumenta l'angolo di parzializzazione della fase (α), l'angolo di circolazione della corrente nel carico e nel triac (φ) tende a diminuire, e viceversa. In particolare, quando l'angolo di parzializzazione aumenta, la corrente nel triac (e pertanto nel carico) diminuisce in quanto viene utilizzata una porzione più ridotta della semionda della tensione di rete. Il contrario succede quando l'angolo di parzializzazione diminuisce; in questo caso infatti, la corrente circolante nel triac (e quindi anche nel carico) aumenta in quanto viene utilizzata una porzione più grande della semionda positiva (e negativa) della tensione della rete.

vole sfasamento tra tensione e corrente. Per evitare quindi che il triac lavori su una sola semionda dell'alternata della rete si provvede a collegare il resistore di sincronizzazione (Rsync) con l'anodo A2 del triac come indicato in figura 2.

A sua volta, la grandezza dell'impulso di innesco del triac deve essere scelta in maniera tale che il triac possa raggiungere la corrente di *mantenimento* (quel livello di corrente cioè che sicuramente lo farà entrare in conduzione)

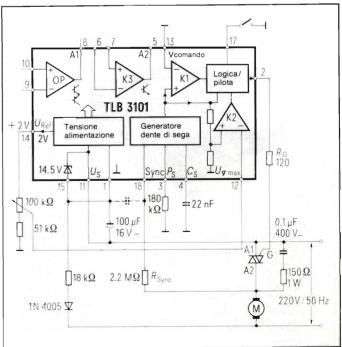


Fig. 1a - Sistema di regolazione della potenza da rete mediante parzializzazione di fase realizzato con il TLB 3101. Questo circuito è il più semplice in quanto per la regolazione della potenza nel carico (in questo caso, un motore) viene utilizzato un numero ridotto di componenti. In questo e nei circuiti che seguono, il triac da impiegare dipenderà dalla potenza del motore. Così, potrà essere impiegato un TXD 10K 60 (ITeff = 8 A) oppure TXC 10K60 (ITeff = 4 A).

Fig. 2 - Circuito per la sincronizzazione della corrente e ripetizione dell'impulso di innesco.

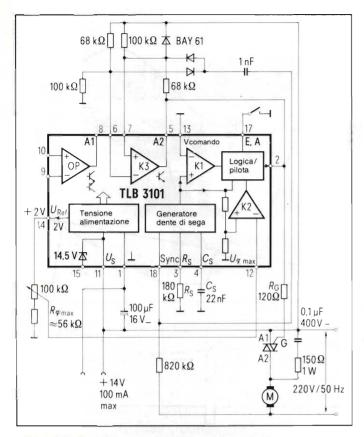


Fig. 3 - Circuito che consente di allungare l'impulso di innesco. Questo allungamento richiede un maggiore assorbimento di corrente da parte dell'integrato, il quale dovrà essere alimentato a parte (+ 14 V, 100 mA).

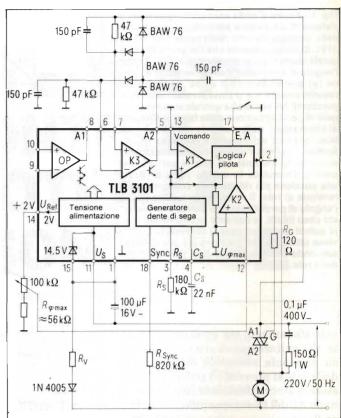


Fig. 4 - Circuito che permette la ripetizione dell'impulso di innesco. La ripetizione dell'impulso è attuata dall'operazionale K3.

REALIZZATE I VOSTRI CIRCUITI STAMPATI IN FOTOINCISIONE

- MOD. DF 2080

 BROMOGRAFO A DOPPIA FACCIA CON POMPA A VUOTO INCORPORATA

 DIMENSIONI: 635 x 600 x 290 mm

 TELAIO DI ESPOSIZIONE SCORREVOLE

 A CASSETTO

 SUPERFICE DI ESPOSIZIONE
 500 x 375 mm

 POSSIBILITA' DI FUNZIONAMENTO COME BROMOGRAFO AD UNA FACCIA

 SISTEMA DI PRESSIONE
 DEL DISEGNO SULLA

- DEL DISEGNO SULLA PIASTRA CON POMPA A VUOTO

VENDITE ANCHE PER CORRISPONDENZA CON PAGAMENTO: ANTICIPATO CON IMBALLAGGIO GRATIS CONTRASSEGNO CON ACCONTO ALL'ORDINE L. 20.000 + L. 4.000 PER IMBALLO SPEDIZIONI CON PORTO ASSEGNATO

- MOD. TR 1000

 DIMENSIONI ESTERNE: 340 x 460 x 120 mm
 SUPERFICE UTILE DI ESPOSIZIONE: 400 x 250 mm
 TIMER ELETTRONICO REGOLABILE DA 0 A 5 MIN.
 QUATTRO TUBI U.V. DA 15 W
 SISTEMA DI PRESSIONE A CUSCINO MORBIDO IN
- NEOPRENE
- NESSUNA MANUTENZIONE NESSUN CONTATTO VISIVO TRA L'OPERATORE ED I TUBI ACCESI

EUROCIRCUITI SNC - VIA F. MANGONE 2 M.M. STAZ. SANT'AGOSTINO - TEL. 02/8321884 **MILANO**

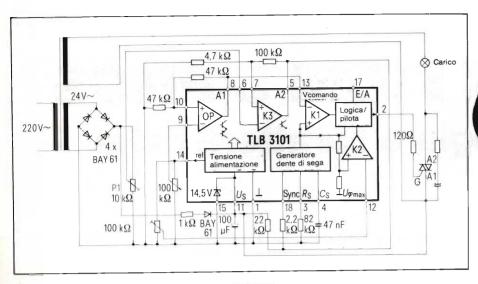


Fig. 5 - Alimentazione e comando del TLB 3101 mediante il secondario in un trasformatore. Gli impulsi di sincronismo vengono ottenuti in questo caso da un ponte raddrizzatore separato e hanno un frequenza di 100 Hz.

anche nel caso di angoli di parzializzazione di fase (α) molto grandi (semionda positiva critica); diversamente, dovrebbero venir prodotti impulsi di innesco aggiuntivi fino a quando il triac non risultasse sicuramente innescato. (Il resistore in serie alla rete - in questo caso da 18 kΩ - dovrà essere per questo motivo eventualmente abbassato di valore).

3) Allungamento dell'impulso di inne-

Queste osservazioni valgono per gli integrati TLB 3101...TLB 3103. Nel circuito di figura 3, l'impulso di innesco del triac viene allungato fino a coincidere con il passaggio per lo zero della semionda della tensione della rete. Per raggiungere questo scopo, l'operazionale K3 viene collegato come un flipflop, che viene settato dal normale impulso di innesco, e resettato dal fianco differenziato del passaggio per lo zero della tensione della rete. Siccome via via che aumenta l'ampiezza dell'impulso di accensione aumenta di pari passo anche l'assorbimento di corrente, non sarà più possibile un'alimentazione dell'integrato tramite la rete; occorrerà un'alimentazione separata (+14 V, 100 mA max in fig. 3).

4) Ripetizione dell'impulso di innesco

La figura 4 riporta un circuito nel quale, terminato il regolare impulso di innesco, altri impulsi di innesco, di breve durata, potranno essere forniti dal comparatore K3 fino a quando il triac non sarà portato in conduzione, e cioè, fino a quando il triac non rimarrà stabilmente innescato. In presenza di carichi induttivi, questo accorgimento può però produrre un aumento considerevole nell'assorbimento di corrente da parte dell'integrato, per cui occorrerà abbassare il valore del resistore posto in serie dalla rete (Rv). Questi accorgimenti valgono per i circuiti TLB 3101/TLB 3103.

5) Circuito di sincronizzazione per tensioni di rete di basso valore

Basse tensioni di rete possono, per esempio, essere quelle presenti sul secondario di un trasformatore come indicato in figura 5.

Quando per la sincronizzazione viene impiegata una tensione alternata di piccolo valore (per esempio 24 V), succede che, a causa della bassa pendenza che ha questa tensione di rete in corrispondenza del passaggio per lo zero, l'ampiezza dell'impulso di sincronizzazione diventi troppo grande e disturbi l'innesco del triac. In queste circostanze è consigliabile sincronizzare l'integrato ricorrendo ad altri sistemi. Uno di questi potrebbe essere quello di raddrizzare entrambe le semionde della tensione della rete, ed amplificarle con l'operazionale OP, ed ottenere in questa maniera un impulso di sincronismo a 100 Hz la cui ampiezza potrà essere allora regolata agendo su P1. Il circuito dove si trova il carico (circuito di potenza) dovrà però essere alimentato, in questo caso, mediante un secondo avvolgimento del trasformatore, e ciò per impedire un cortocircuito del ponte raddrizzatore.

40 FASCICOLIE 40 FASCICOLIE 40 FASCIO 109.000 Sconto 20% agli abbonati

CORSO **PROGRAMMATO DI ELETTRONICA ED ELETTROTECNICA**

Il corso articolato in 40 fascicoli per complessive 2700 pagine, permette in modo ra-pido e conciso l'apprendimento dei concetti fondamentali di elettrotecnica ed elettronica di base, dalla teoria atomica all'elaborazione dei segnali digitali.

La grande originalità dell'opera, non risiede solo nella semplicità con cui gli argomenti vengono trattati, anche i più difficili, non solo nella struttura delle oltre 1000 lezioni incentrate su continue domande e risposte. esercizi, test, al fine di permettere la costante valutazione del grado di apprendimento aggiunto, ma soprattutto nella possibilità di crearsi in modo organico un corso "ad personam" rispondente le singole necessità ed objettivi. Se non avete tempo o non volete dedicare 120 delle vostre ore, anche in modo frammentario, al completamento del corso, potete seguire un programma di mi-nima, sempre con brillanti risultati, con obiettivi, anche parziali, modificabili dinamicamente nel corso delle letture successive. Ogni libro è una monografia esauriente sempre consultabile per l'approfondimento di un particolare argomento.

Tagliando da inviare a J.C.E. - Via dei Lavoratori, 124

20092 Cinise	IIO B. (MI)	
□ Si Elettron	speditemi il "Corso Programma ica ed Elettrotecnica"	ato di
nome		
cognome		
indirizzo		
cap.		
città	The state of the s	
codice fiscale	(indispensabile per le aziende)	
firma		Ħ
		data
□ Abbonato	□ Non abbonato	

Pagheró al posti l'importo di

□ L. 87.200 abbonato

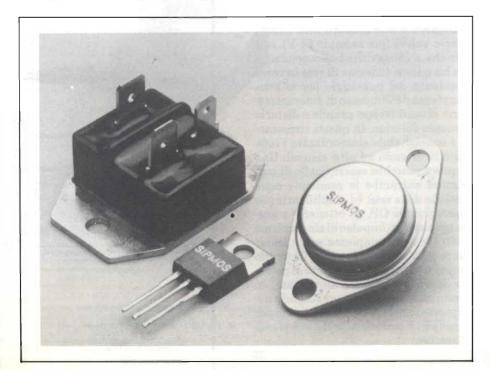
□ L. 109.000 non abbonato

+ spese di spedizione Allego assegno N

in questo caso la spedizione è gratuita.

GENNAIO - 1984

TRANSISTORI SIPMOS Tecnologia e caratteristiche

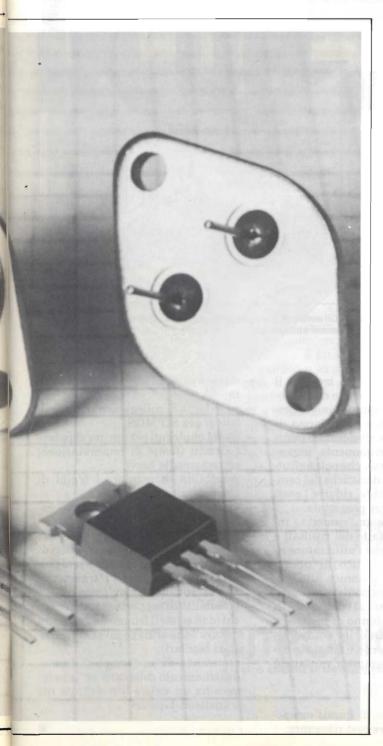

a cura della Redazione

Le caratteristiche di questi nuovi dispositivi di potenza a semiconduttore sono veramente eccezionali. Innanzittutto, essendo ad effetto di campo, a differenza dei bipolari richiedono per il loro pilotaggio una corrente del tutto trascurabile. Se ne possono collegare in parallelo decine senza problemi e raggiungere pertanto potenze notevoli (5 kW); sono inoltre "interruttori statici" veloci, capaci di sopportare, senza danni, sovraccarichi (assenza di «second breakdown»).

a tecnologia SIPMOS è un sistema di costruzione dei transistori FET-MOS completamente nuovo. Un accurato progetto del componente e approfondite conoscenze nel campo della tecnologia MOS hanno permesso di realizzare questi transistori di potenza ad effetto di campo, aventi proprietà fino ad oggi sconosciute ai FET. Questi transistori di potenza possono essere, per esempio, pilo-

tati da microcomputer, ed in generale, da tutti i circuiti integrati LSI, e di conseguenza sono in grado di aprire nuove dimensioni alle tecniche digitali.

I transistori SIPMOS costituiscono la novità tecnologica più interessante portata avanti dalla *Siemens* in questi ultimi anni. La parola SIPMOS è stata coniata con le iniziali delle parole *Siemens Power MOS*.



Tecnologia

I transistori SIPMOS posseggono attualmente una sicurezza di funzionamento nel tempo tale da poter essere impiegati con tutta tranquillità in tutti i casi dove il parametro "sicurezza di funzionamento" riveste un ruolo di primo piano. Alla base di questa importante caratteristica c'è, nel transistore SIPMOS, la tecnologia classica planare al silicio la quale però nel caso del SIPMOS è stata modificata in alcune fasi.

La tecnologia planare al silicio è, com'è noto, una tecnologia standard, utilizzata da tutti i costruttori di dispositivi a semiconduttore in quanto permette di formare in poco spazio (chip di silicio) un gran numero di dispositivi elettronici, e di conseguenza, ha permesso la realizzazione dei circuiti integrati. Questa importante proprietà della tecnologia planare viene sfruttata anche per la realizzazione dei transistori SIP-MOS. In particolare, viene in questo caso sfruttata la grande stabilità, nel tempo, degli strati passivati formati sulla superficie del chip del componente, caratteristica questa che permette un funzionamento sicuro (non si verificano "drift" di nessun parametro), il che è estremamente importante per il progettista di circuiti elettronici.

Parallelamente a questo importante fattore tecnologico, contribuiscono al consolidamento del parametro "sicurezza di funzionamento", le prove di qualità alle quali la Siemens sottopone questo componente; prove che riproducono in laboratorio, con le debite maggiorazioni, le stesse condizioni di fun-

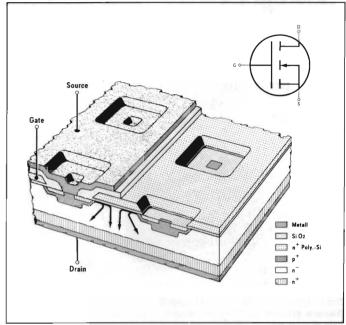


Fig. 1 - Simbolo e struttura del chip di un transistore SIPMOS. Questi transistori vengono costruiti utilizzando la tecnologia planare del silicio.

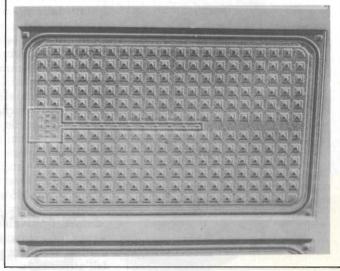


Fig. 2 - Il chip di un transistore SIPMOS è formato da tante celle elementari funzionanti in parallelo; da qui derivano le notevoli intensità di corrente che questo FET può trattare.

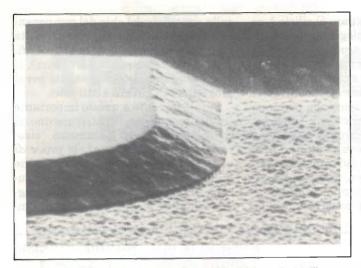


Fig. 3 - Particolare della struttura del gate in silicio policristallino.

Ora i transistori SIPMOS sono disponibili anche in contenitore TO-238. Rispetto al normale TO-3, questo contenitore permette di avere il terminale di drain isolato nei confronti del dissipatore di calore e di essere più facilmente fissato su quest'ultimo.

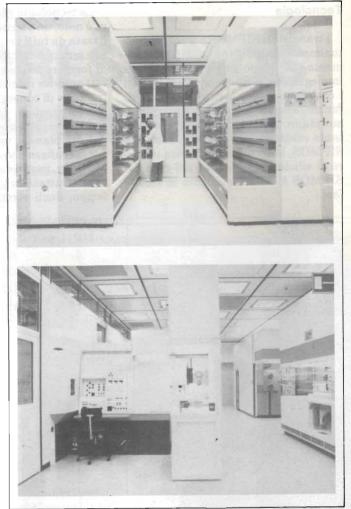


Fig. 5 - Gli ambienti dove vengono preparati i chip non devono contenere pulviscolo atmosferico.

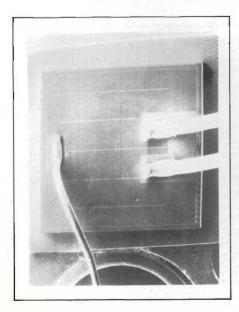


Fig. 4 - I contatti degli elettrodi vengono saldati sul chip mediante ultrasuoni (a sinistra, il contatto del gate, a destra il contatto della source).

zionamento in cui verrà a trovarsi il componente una volta uscito dalla fabbrica. I risultati di queste prove, presentati dalla Siemens sotto forma di grafici e di tabelle, si riveleranno punti di riferimento estremamente importanti per il progettista, che potrà sfruttare appieno le caratteristiche del componente, e in definitiva, ridurre i costi delle apparecchiature progettate.

Esiste però anche un "cammino inverso", ed è quello fatto dai risultati e dalle osservazioni che l'utilizzatore rileva dall'impiego pratico di questo componente, e che comunica alla Siemens. Queste osservazioni potranno rivelarsi oltremodo utili al costruttore in quanto gli consentiranno di mettere a punto definitivamente il "comportamento" del componente, e questo in definitiva, ritornerà sempre a vantaggio dell'utilizzatore.

Caratteristiche

Le caratteristiche di questi componenti possono essere così riassunte:

- elevata potenza trattata e commutăta;
- possibilità di collegamento in parallelo di più SIPMOS;
- tempi impiegati per aprire/chiudere i circuiti (tempi di commutazione) estremamente brevi;
- possibilità di regolare i tempi di commutazione;
- andamento lineare delle curve caratteristiche;
- frequenza-limite con valore elevato;
- capacità di "interrompere" valori di corrente elevati, e di sopportare tensioni elevate quando i transistori non si trovano in conduzione;
- possibilità di sopportare sovraccarichi (non esiste il fenomeno "seconda rottura" che affligge invece i transistori bipolari);
- mancanza di un "tempo di immagazzinamento delle cariche", che invece ha un valore ben definito nei transistori bipolari.

TROVATO ILGUASTO INUSOFFIO.

BITRONG Belectro chemical development

Non infiammabile

Confezionato a norme CEE

SIPMOS PER REGOLARE LA VELOCITA' DI UN MOTORE IN C.C.

di H. Bichler, Siemens S.p.A.

I FET-MOS di potenza SIPMOS stanno guadagnando sempre più terreno nel settore degli azionamenti in campo industriale. Le loro caratteristiche (possibilità di essere collegati in parallelo per aumentare la potenza, tempi di commutazione brevi, possibilità di trattare potenze fino a 5 kW, e assenza di "second breakdown"), li fanno preferire in applicazioni che fino ad oggi erano appannaggio esclusivo dei tiristori. L'applicazione descritta vuole fornire un loro interessante esempio di impiego.

ino a qualche tempo fa, i sistemi di regolazione della velocità dei motori in continua erano realizzati mediante tiristori, e la regolazione avveniva utilizzando una porzione più o meno ampia della semionda positiva della tensione della rete (sistema a parzializzazione di fase figura 1a). Con la comparsa sul mercato di transistori bipolari e MOS di potenza, il sistema di regolazione della potenza a parzializzazione di fase può essere sostituito, in alcuni casi, inviando negli avvolgimenti del motore impulsi di corrente unidirezionale più o meno lunghi (sistema di regolazione della potenza detto a modulazione della lunghezza degli impulsi PWM = Pulse Width Modulation figura 1b). La brillante affermazione in questi ultimi tempi dei MOS di potenza (SIPMOS e POWER MOS) ha fatto sì che, in molti casi, in questi sistemi di regolazione siano stati preferiti i MOS di potenza in luogo dei transistori bipolari convenzionali (singoli o in configurazione Darlington). C'è da dire però che ultimamente anche il GTO - un tiristore che può essere bloccato mediante impulso di gate - si è inserito validamente tra i dispositivi per il controllo della potenza elettrica.

Il circuito che stiamo per descrivere è un esempio tipico di applicazione dei MOS di potenza nel campo della regolazione; si tratta infatti di un sistema di regolazione della velocità di un motore in continua nel quale l'avvolgimento di campo (statore) è quello dell'indotto (rotore) sono collegati in serie.

Occorre però precisare subito che questi sistemi di regolazione PWM a transistori, capaci di fornire impulsi di corrente di larghezza variabile, attualmente risultano più costosi di quelli classici a tiristori. In compenso però posseggono caratteristiche di manovrabilità e di affidabilità tali da farli preferire a quelli classici.

Questi pregi possono essere così rias-

- ad una frequenza di lavoro (frequenza di commutazione) sufficientemente elevata (superiore cioè a 16 kHz), il rumore di funzionamento a bassi regimi di velocità è inferiore a quello che normalmente si riscontra nei sistemi di regolazione a parzializzazione di fase:
- grazie all'uniformità della corrente, le scintille al collettore (spazzole) sono appena avvertibili.

Il circuito riportato in figura 2 è stato progettato per poter regolare la velocità dei giri in un motore in continua avente gli avvolgimenti dello statore e del rotore in serie. Il motore ha una potenza di 250 W; la velocità può essere variata con questo sistema, tra 700 e 10.000 giri al minuto.

Descrizione del circuito

Il motore viene alimentato con una tensione continua pulsante a 100 Hz ottenuta raddrizzando la tensione alternata della rete mediante un normale raddrizzatore a ponte. In serie agli avvolgimenti del motore è posto il transistore BUZ 44A che funziona da "interruttore". Questo transistore infatti in

unione alla relativa circuiteria formata dalle reti RCL e dal diodo volano, aprendosi e chiudendosi per una durata determinata dall'impulso PWM applicato in gate, non fa altro che applicare al motore, per tempi più o meno lunghi a seconda delle esigenze del carico, la tensione pulsante raddrizzata a 100 Hz presente all'uscita del ponte. Il periodo di ripetizione di questi impulsi di corrente corrisponde a quello di un segnale alternato a 16 kHz.

L'impulso variabile in ampiezza PWM è fornito dal circuito integrato TDA4718A (figura 3), normalmente impiegato per realizzare alimentatori stabilizzati a commutazione SMPS (SMPS = Switched Mode Power Supply). Il segnale di uscita di questo integrato è fornito da un circuito a collettore aperto. Per potere applicare al gate del SIPMOS un impulso di pilotaggio con fase corretta è stato necessario inserire tra uscita del TDA4718A e gate del transistore, l'unità invertitrice-pilota 4049B, la quale consente, tra l'altro, di avere impulsi di comando con fronti di salita e discesa tali da avere tempi di commutazione dell'impulso brevi, come appunto richiesto.

La larghezza dell'impulso PWM di comando del SIPMOS applicato al gate viene regolata in base alle seguenti considerazioni:

- per impedire che all'atto della messa in funzione del sistema si producano picchi di corrente si ricorre al cosidetto condensatore di avvìo, il quale fa sì che al gate del SIPMOS non venga applicato inizialmente

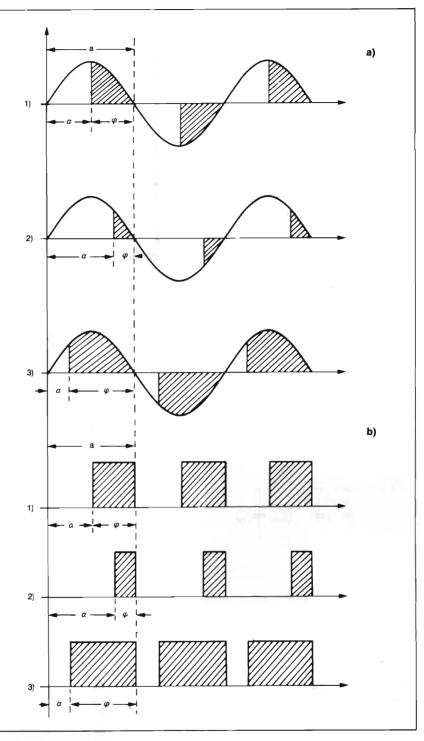


Fig. 1 - Principio di funzionamento del sistema di regolazione della corrente continua in un carico (a) con sistema a parzializzazione di fase di una semionda della tensione della rete; (b) con il sistema a variazione della lunghezza dell'impulso detto anche sistema PWM (PWM = Pulse Width Modulation). Nel sistema di regolazione della potenza a parzializzazione di fase viene utilizzato come elemento regolatore il tiristore, il quale a seconda della cadenza dell'impulso di innesco (sincronizzato con il passaggio per lo zero della tensione della rete) innescherà il tiristore in corrispondenza di un angolo di fase ben definito (angolo d'innesco) della semionda della rete. il tiristore una volta innescato farà circolare corrente nel carico per la rimanente parte dell'angolo di fase (angolo di circolazione di corrente). Nel sistema a variazione della larghezza dell'impulso, la regolazione della corrente nel carico è stabilita dal ciclo di utilizzazione, e cioè, dal rapporto tempo di circolazione/tempo di non-circolazione della corrente nel carico. La somma dei due tempi dà il periodo della frequenza di lavoro o di commutazione del sistema. Ad una variazione del ciclo di utilizzazione (rapporto on/off) corrisponde in pratica una variazione della lunghezza dell'impulso:

periodo della tensione di rete (o dell'impulso modulato in ampiezza);

tempo durante il quale nel carico non circola corrente;

= tempo durante il quale nel carico si ha circolazione di corrente;

 φ = tempo durante il quale nel carico si na circolazione di conomo, 1), 2), 3)= ciclo di utilizzazione rispettivamente del 50% (0,5), del 25% (0,25) e del 75% (0,75).

un impulso con un fronte ripido ma che quest'ultimo venga raggiunto lentamente, partendo cioè da zero fino al raggiungimento (dopo un breve lasso di tempo), del "tetto" di ampiezza richiesto a regime (tensione all'ingresso di controllo 4);

durante il funzionamento, il comparatore del limitatore dinamico di corrente (K7 all'interno dell'integrato, fig. 3) provvede a confrontare la tensione presente ai capi di un resistore di misura della corrente con una tensione di riferimento preregolabile, "riducendo" il segnale d'uscita dall'integrato non appena il valore di tensione preregolato dovesse essere superato da quello presente ai capi del resistore di misura. Questa operazione in realtà non fa altro che ridurre e limitare il ciclo di utilizzazione (duty cycle) dell'impulso di comando in maniera che mai venga superata l'intensità di corrente tollerabile dal transistore SIPMOS utilizzato;

— in base al sistema di controllo feedforward utilizzato dall'integrato, la
larghezza dell'impulso di comando
viene modulata in maniera inversamente proporzionale alla tensione
d'ingresso; ciò vuol dire che quando
all'ingresso dell'integrato si ha una
tensione elevata, la larghezza dell'impulso di corrente fornito all'uscita dell'integrato sarà relativamente
piccola, e viceversa a livelli bassi
della tensione d'ingresso, corrisponderanno impulsi d'uscita con larghezza relativamente ampia.

Quest'ultima caratteristica fa sì che nel motore venga a scorrere una porzione di componente alternata a 100 Hz estremamente ridotta (approssimazione ad una alimentazione in cc).

Occorre comunque tener presente che la larghezza dell'impulso viene determinata principalmente dal livello di tensione presente all'ingresso di controllo dell'integrato (terminale 4).

Per coprire il campo di escursione del ciclo di utilizzazione che va da 0 a 90% (0,9), questa tensione dovrà assumere valori compresi tra 1,8 V e 5,5 V. La tensione di controllo suddetta viene fornita dal convertitore tachimetrico frequenza/tensione.

La frequenza del segnale fornito dal generatore tachimetrico viene raddoppiata da un ponte a diodi, e successivamente applicata all'ingresso di un comparatore. All'aumentare del numero dei giri del motore, aumenterà ovviamente anche l'ampiezza del segnale di uscita del tachimetro, e corrispondentemente verrà ridotto il ciclo di utilizzazione dell'impulso di uscita dall'integrato.

Dimensionamento dei circuiti esterni al TDA 4718A

1) L'oscillatore (VCO)

Il valore della frequenza dell'impulso di comando del SIPMOS (frequenza di commutazione del sistema) deve essere superiore a 16 kHz, e cioè oltre la

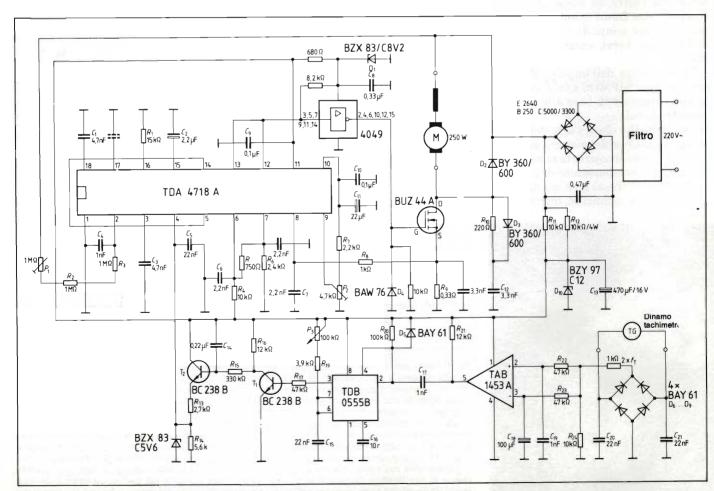


Fig. 2 - Schema elettrico completo del regolatore della velocità di un motore in cc con gli avvolgimenti dello statore e del rotore collegati in serie. Il motore è alimentato dalla tensione raddrizzata dalla rete (100 Hz). Il transistore SIPMOS chiude il circuito di alimentazione del motore secondo tempi più o meno lunghi dipendenti dal carico imposto al motore. Il segnale di chiusura e di apertura di questo "interruttore statico veloce" è fornito dal circuito integrato TDA4718A. La durata del tempo in cui l'interruttore rimane chiuso dipende dal carico. Le variazioni del carico vengono segnalate all'integrato da un generatore tachimetrico. Questo regolatore è stato dimensionato per un motore in cc con potenza di 250 W. Il numero dei giri, a questa potenza, può essere regolato entro 700 e 10.000.

soglia udibile. In questo modo, l'alternata residua (ripple) assumerà un valore molto basso, ed anche il "rumore" prodotto dal motore rimarrà entro limiti sopportabili. Se il VCO non deve essere sincronizzato dall'esterno, il terminale 14 andrà collegato con il terminale 5 e il valore della frequenza dell'oscillatore potrà essere fissato scegliendo opportunamente i componenti R1 (Rt) e C1 (Ct); così, per esempio, assegnando a C1 il valore di 4700 pF e a R1 il valore di 15 k Ω , si otterrà una frequenza di commutazione con valore approssimativo di 16 kHz.

2) Massimo valore del ciclo di utilizzazione

Il massimo valore del ciclo di utilizzazione di un'uscita dipende esclusivamente da R1 (RT = 15 k Ω). Nel nostro caso, esso è 0,45. Collegando assieme le due uscite (e cioè i terminali 13 e 12) si otterrà invece il valore massimo del ciclo di utilizzazione, che è appunto 0,9, e

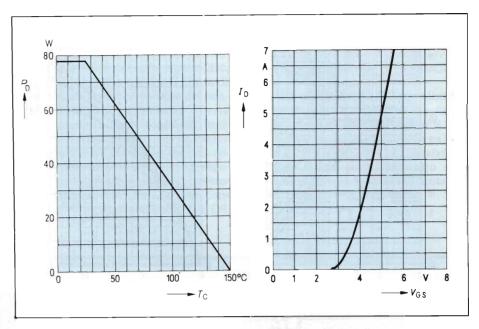


Fig. 4 - Curva tipica di trasferimento del BUZ44A che indica l'andamento tra la corrente di drain (ID) in funzione della tensione tra gate e source (Vcs), misurata con una tensione tra drain e source di 25 V e la temperatura della giunzione di 25° C. La curva è stata rilevata con tensioni ad impulsi della durata di 80 ms. A sinistra: curva di dissipazione in funzione della temperatura del contenitore.

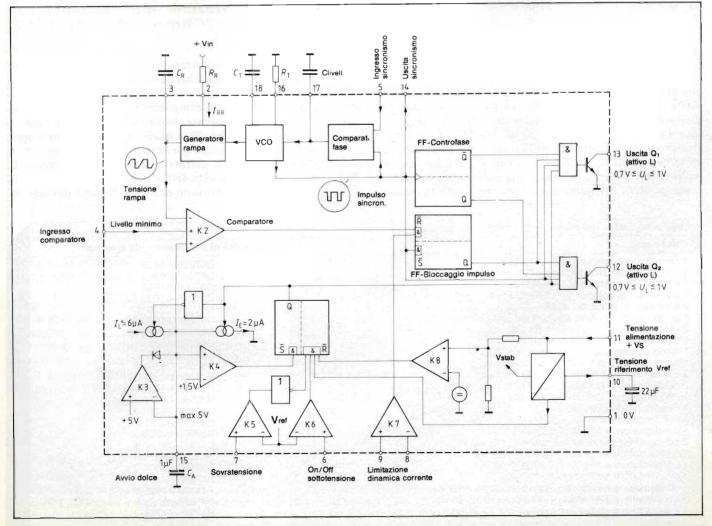


Fig. 3 - Funzioni contenute nel circuito integrato TDA 4718A. Questo integrato è stato progettato principalmente per la realizzazione di alimentatori stabilizzati a commutazione (SMPS).

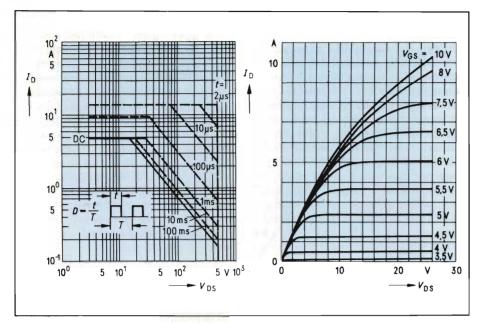


Fig. 5 - Curve caratteristiche del BUZ44 che mostrano l'andamento della corrente di drain (ID) in funzione della tensione tra drain e source con la tensione tra gate e source (VGS) data come parametro. A sinistra: aree di funzionamento sicuro (ID = f (VDS)).

con questo valore sarà possibile regolare "la conducibilità" del SIPMOS BU-Z44A.

3) Generatore di rampa

La pendenza della tensione di uscita del generatore di rampa (Vc3) è regolata da C3 (CR) da R2, R3, P1 (RR vedi fig. 3). Questa regolazione permette di ridurre al minimo l'ondulazione di rete residua a 100 Hz, presente sulla corrente circolante nel motore, e ciò si ottiene collegando il resistore RR con il terminale positivo del ponte raddrizzatore

della tensione di rete. Per avere un tempo di scarica più breve occorrerà che il valore di C3 (Cr) non risulti inferiore al valore di C1 (Ct). Nel nostro caso (Cr=Ct=4,7 nF). A sua volta, il valore da assegnare al resistore di controllo feedforward (Rr=R2+R3+P1) dipenderà dall'entità della corrente di ondulazione tollerata nel motore, e dal massimo valore dei giri ammissibile dal motore. Un valore approssimativo si ha in corrispondenza di una corrente di circa $100~\mu A$ che circola nel resistore di $3~M~\Omega$ quando ai capi di quest'ultimo è applicata la massima tensione.

4) Partenza dolce

Il condensatore di avvìo C2 viene caricato con una corrente di $5 \mu A$ fino ad una tensione di 5 V.

5) Limitazione dinamica della corrente

Il valore di corrente circolante nel transistore SIPMOS BUZ 44A viene monitorizzato dal resistore R9 inserito tra source e massa. Il valore di questo resistore dipende dal tipo di transistore SIPMOS impiegato; nel nostro caso, il BUZ44A tollera una corrente pari a 4,8 A. Se al resistore di misura (R9) si assegna il valore 0,33 Ω (come nel nostro caso), e la corrente commutata dal SIP-MOS arriva fino a 4,8 A, la tensione di turn-off al comparatore dovrà essere regolata mediante il regolatore P2, su un valore di 1,5 V. Se invece si dovesse usare il BUZ44 (da 5,6 A), occorrerebbe abbassare il valore del resistore di misura R9 a 0.22Ω (tensione di turn-off = 1,23 V). Le eventuali oscillazioni smorzate (ringing) presenti in fase di commutazione vengono attenuate dalla rete RC formata da R8 = 1 k Ω e C7 = 2,2

6) Protezione nei confronti di tensioni di alimentazione molto basse

Il comparatore per le tensioni troppo elevate (sovratensioni) (terminale 7, fig. 3), e quello per le tensioni troppo basse (terminale 6) sono dimensionati in maniera da bloccare il segnale di uscita dell'integrato tutte le volte che la tensione di alimentazione dovesse es-

Componenti	Codice di ordinazione alla Siemens			
amplificatore operazionale TAB 1453 A	Q67000-A1482			
C.I. per alimentatori switching TDA 4718A	Q67000-Y639			
circuito temporizzatore TDB 0555B	Q67000-A1044			
transistore di potenza SIPMOS BUZ44A	Q67078-A1007-A3			
2 transistori al silicio BC 238B	Q62702-C279			
ponte raddrizzatore al silicio di piccola potenza E2640-B250 C 5000/3300	C67067-A1783-A2			
2 raddrizzatori veloci al silicio BY 360/600	C67047-Z1335-A1			
5 diodi di commutazione al silicio BAY 61	Q62702-A389			
I diodo di commutazione al silicio BAW 76	Q62702-A397			
3 condensatori a film MKT, 1 nF/400 Vcc	B32560-D6102-J			
3 condensatori a film MKT, 2.2 nF/400 Vcc	B32560-D6222-J			
2 condensatori a film MKT, 3,3 nF/400 Vcc	B32560-D6332-J			
2 condensatori a film MKT, 4,7 nF/400 Vcc	B32560-D6472-J			
I condensatore a film MKT, 10 nF/400 Vcc	B32560-D6103-J			
3 condensatori ceramici multistrato, 22 nF/50 Vcc	B37987-J5223-K3			
I condensatore a film MKT, 22 nF/250 Vcc	B32560-D3223-J			
2 condensatori ceramici multistrato, 0,1 µF.50 Vcc	B37987-J5104-K			
condensatore a film MKT, 0,22 μF/100 Vcc	B32560-D1224-J			
1 condensatore a film MKT, 0,33 µF/100 Vcc	B32560-D1334-J			
1 condensatore MKP, 0,47 µF/400 Vcc	B32650-K4474-J			
1 condensatore elettrolitico in alluminio 2,2 µF/63 Vcc	B41326-A8225-V			
1 condensatore elettrolitico in alluminio 10 µF/63 Vcc	B41326-A8106-V			
1 condensatore elettrolitico in alluminio 22 µF/63 Vcc	B41326-A8226-V			
1 condensatore elettrolitico in alluminio 470 µF/16 Vcc	B41326-A4477-V			

sere notevolmente superiore o inferiore rispetto ai valori nominali stabiliti. La soglia di lavoro dei comparatori si trova a 2.5 V.

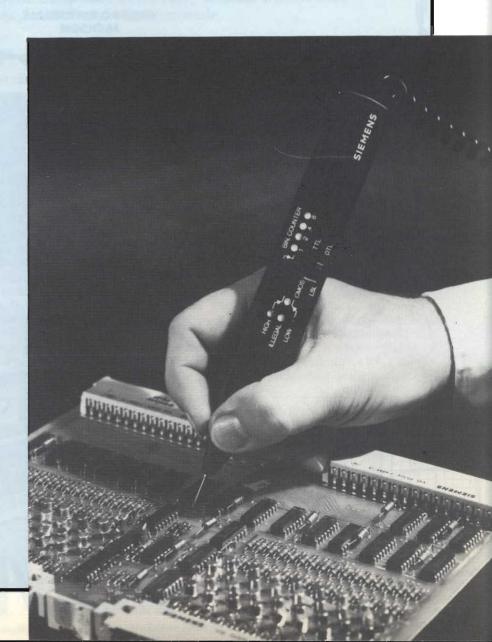
7) Suscettibilità alle interferenze

A causa della frequenza relativamente elevata, i fianchi degli impulsi della corrente di commutazione risultano molto ripidi, e di conseguenza c'è l'eventualità che possano venire applicati agli ingressi dei comparatori, per via capacitiva o induttiva, impulsi aghiformi di tensione. Pertanto, in fase di realizzazione del circuito stampato, occorrerà localizzare molto accuratamente i punti di massa. In particolare, la pista di rame che collega il punto di massa del SIPMOS con quella del ponte raddrizzatore della tensione di rete dovrà essere più corta possibile. Inoltre, un certo isolamento dovrà essere realizzato anche tra la sezione di comando e la sezione di potenza del regolatore. Tutti gli ingressi dei comparatori dovranno essere "bloccati" con condensatori di basso valore (C4, C5, C6,

C7, C8, C9, C10).

Eventuali segnali di interferenza presenti sul circuito del generatore tachimetrico vengono soppressi da C20 e C21.

Questo regolatore può essere alimentato anche con una tensione di rete da 110 V. In questo caso, i resistori R11 e R12 devono essere portati ad un valore di $4,7 \text{ k} \Omega$. A sua volta, il transistore SIPMOS dovrà essere adattato alle particolari caratteristiche del motore.


Il Logic Probe della Siemens è un nuovo strumento di facile impiego, per provare circuiti logici positivi, come TTL, DTL ed RTL. Può essere utilizzato anche per circuiti CMOS, MOS e HTL nonché HiNTL. Una protezione contro sovraccarico (fino a 300 V) e una contro errata polarità della tensione ausiliaria (fino a -30 V) proteggono lo strumento da casuali errori d'impiego.

Il Probe è munito di otto LED; dalla combinazione di quelli che si accendono è facile definire una data forma di segnale, come: tristate, livelli logici, impulsi singoli o a gruppi, stati indefiniti, eccetera. Il Probe ha una piccola capacità d'ingresso ed una resistenza d'ingresso elevata, per cui possono essere individuati anche segnali di disturbo veloci (>10 ns). Con il rilevamento del rapporto tra gli impulsi si possono evidenziare anche fianchi lenti. Gli eventi possono essere letti su un contatore a quattro cifre incorporate.

Questo economico Probe permette di definire diverse forme dei segnali presenti nei circuiti logici. Si presta specialmente per indagini che finora potevano essere svolte solamente con costosi oscilloscopi. I segnali possono essere letti anche a grande distanza; a questo scopo, si ammorsa il Probe al circuito, sostituendo la punta con un morsetto al quale fa capo un conduttore di misura.

Facile da usare il Logic Probe presentato dalla Siemens, serve per provare circuiti logici positivi, come TTL, DTL e RTL. Il Probe è munito di otto LED con i quali vengono segnalate le diverse forme dei segnali.

PER CIRCUITI DIGITALI

Per 'lavorare' al meglio con il Pet e l'M20

Paolo e Carlo Pascolo

IL BASIC DEL PET E DELL'M20

Il personal computer rappresenta oggigiorno, oltre che un valido aiuto nel lavoro, anche un'irresistibile tentazione. Può capitare, così, che qualcuno si trovi a disporre di un Commodore o di un M 20 Olivetti senza conoscerne appieno il linguaggio e le possibilità. Questo volume vuol rappresentare proprio un prezioso supporto per chi debba, o voglia imparare a programmare in Basic su questi strumenti di lavoro, gioco o studio: comandi, istruzioni, informazioni, consigli... fino a diventare davvero 'padroni' di due dei più diffusi Personal Computer.

226 pagine. Lire 16.000 Codice 336 D

REGOLATORI DI POTENZA CON TLB 3101/02

ing. Walter Schumbrutzki, Siemens S.p.A.

In altra parte della rivista sono state illustrate le caratteristiche delle versioni economiche del TLB 3101, un circuito integrato appositamente studiato per realizzare sistemi di controllo della potenza su carichi ohmici e induttivi. Il sistema di controllo è quello classico a parzializzazione della fase della rete, attuata trattandosi del triac, su entrambe le semionde.

li esempi di applicazione che presenteremo dimostrano che le nuove versioni del c.i. TLB 3101 Siemens (dal TLB 3102 al TLB 3104) sono in grado di soddisfare le esigenze di regolazione della potenza di tutte le apparecchiature per uso domestico. In queste apparecchiature infatti il sistema di regolazione della potenza da rete a parzializzazione della fase è diventato standard, e questi nuovi integrati sono stati progettati proprio per realizzare questo sistema con il minimo numero di componenti.

Gli esempi di applicazione descritti vogliono solo indicare la linea direttrice lungo la quale l'utilizzatore dovrà muoversi. Il progettista di questi sistemi di regolazione della potenza, una volta conosciute le funzioni contenute in questi integrati e la loro interdipendenza in funzione della tensione di rete

e del carico esterno, potrà infatti apportare anche negli esempi citati, tutte le modifiche necessarie per rendere efficiente la sua particolare applicazione.

Sistema di regolazione della temperatura

In tutti i sistemi di regolazione automatica della temperatura degli ambienti, il circuito di regolazione elettronico deve fare in maniera che agli elementi riscaldanti del sistema (termoelementi) venga applicata o tolta la tensione della rete tutte le volte che la temperatura dell'ambiente viene a trovarsi al disotto o al disopra di un certo valore di temperatura prefissato. Questo sistema di controllo (figura 1) che prevede il passaggio della corrente nel termoelemento per un determinato nume-

ro di sinusoidi della tensione della rete, e la successiva interruzione per un determinato periodo, viene chiamato sistema di controllo a pacchetti di oscillazioni (o sistema di controllo on/off).

Variando opportunamente i tempi durante i quali nel termoelemento, circola la corrente (fase on), e i tempi durante i quali questa corrente non circola (fase off), sarà possibile variare la potenza calorica fornita dal termoelemento, e per risultato finale si avrà la stabilizzazione della temperatura di un ambiente su un valore prefissato.

Per realizzare questo sistema di regolazione della temperatura con il circuito riportato in *figura 2*, occorre che la tensione ai capi del termistore NTC venga confrontata nell'amplificatore operazionale OP con una tensione a dente di sega prodotta da K3, e che tramite l'ingresso E/A, vengano applicati

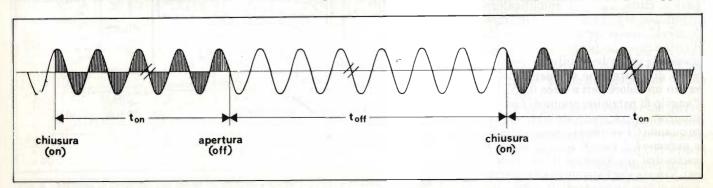


Fig. 1 - Principio di funzionamento del sistema di regolazione on/off della temperatura (sistema proporzionale).

al triac una serie di impulsi di innesco.

Quando il termistore NTC si raffredda, la tensione ai suoi capi aumenta, e parimente aumenterà anche il rapporto tra il tempo in cui nel termoelemento circola la corrente e il tempo in cui nello stesso termoelemento non si ha circolazione di corrente (variazione del rapporto on/off).

È in questa maniera che si stabilisce l'interdipendenza tra la temperatura che si desidera avere in un dato ambiente e il calore fornito dagli elementi riscaldanti necessari per ottenerla. La preregolazione del valore di temperatura ambiente desiderato viene effettuata agendo sul potenziometro inserito nel circuito del termistore NTC. L'altro resistore variabile in serie serve a fissare il campo di temperature desiderato.

Controllo della potenza di aspirazione di un aspirapolvere

Applicando opportunamente all'interno della camera di aspirazione di un aspirapolvere un magnete accoppiato ad un sistema di misura di pressione a membrana, e sistemando questa unità vicino ad un sensore di campomagnetico (per esempio, il SAS 231 W, TL2 4910) è possibile ricavare dal sensore un segnale che risulterà direttamente proporzionato al valore della pressione esistente all'interno della camera di aspirazione. Questo segnale potrà essere utilizzato per comandare il TLB 3102.

Il circuito riportato in figura 3 consentirà allora di adeguare, utilizzando il sistema di controllo a parzializzazione di fase, la potenza di aspirazione dell'aspirapolvere alla particolare natura della superficie, per esempio, del tappeto da pulire. Per prima cosa occorrerà, agendo su P1, effettuare la taratura del sistema in maniera che quando il magnete si trova in posizione di riposo (e cioè a circa 1 mm di distanza dal sensore), si possa leggere sul piedino 4 del SAS 231 W una tensione di uscita pari a circa 3,9 V. L'amplificatoreinvertitore dell'operazionale OP "trasformerà" questa tensione, (che risulta direttamente proporzionale alla depressione presente all'interno della camera di aspirazione dell'aspirapolvere), in un valore pari a circa 0,2 V. Ma l'angolo di parzializzazione di fase appropriato potrà essere stabilito soltanto quando C1 verrà caricato tramite R3 e assumerà il valore della tensione di uscita dell'operazionale OP (avvio dolce). Via via che l'angolo di parzializzazione di fase aumenterà, il condensatore C1 potrà scaricarsi velocemente at-

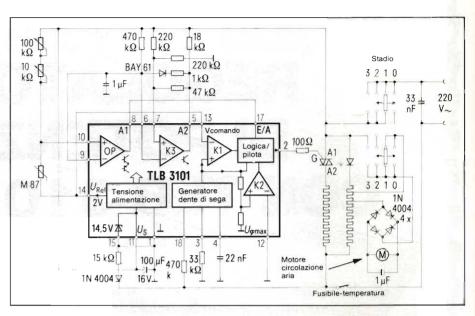


Fig. 2 - Circuito per la regolazione della temperatura ambiente con il sistema on/off.

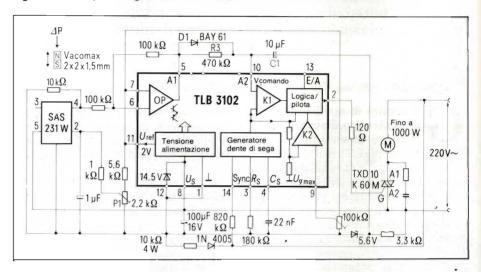


Fig. 3 - Controllo della pressione all'interno della camera di aspirazione di un aspirapolvere. Il circuito è munito anche di un sistema di "partenza dolce".

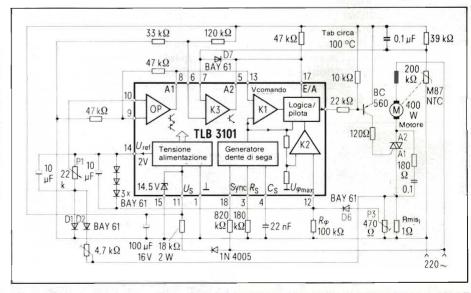


Fig. 4 - Sistema di regolazione del numero dei giri di un motore di un frullatore/impastatrice. Il sistema prevede la limitazione della corrente e il controllo della temperatura del motore.

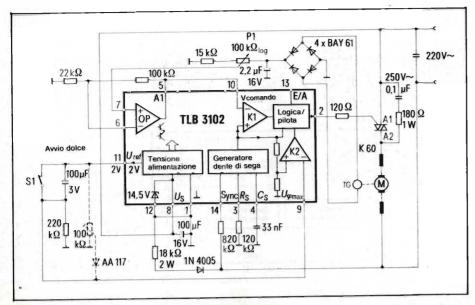


Fig. 5 - Regolatore del numero dei giri di un motore di un trapano. Il motore è munito di generatore tachimetrico e il sistema consente una partenza dolce.

traverso D1, rispondendo in questo modo, altrettanto velocemente, ad un eventuale abbassamento di pressione all'interno della camera di aspirazione dell'aspirapolvere.

Controllo della velocità nei frullatori e nelle impastatrici

Il particolare dimensionamento del circuito riportato in figura 4 permette di realizzare tramite il solito sistema di controllo della potenza a parzializzazione di fase, una regolazione continuativa del numero dei giri del motore, per esempio di un frullatore o di una impastatrice. Il sistema funziona così: quando la tensione ai capi del resistore di misura (Rmisura) tende ad abbassarsi in seguito ad un sovraccarico, assumendo un valore più basso (e addirittura negativo) rispetto alla tensione presente ai capi del diodo D1, succederà che il diodo D2 comincerà a condurre, abbassando quindi anche la tensione presente su P1, e conseguentemente anche la tensione di comando. Conseguenza: l'angolo di parzializzazione della fase tenderà a diminuire, e conseguentemente potrà scorrere nel triac, e pertanto anche nel motore, una corren-

te più elevata che compenserà in questa maniera il sovraccarico precedentemente introdottosi. Il minimo valore dell'angolo di parzializzazione di fase viene fissato mediante i tre diodi. D3. D4. D5 e il resistore R φ. Il valore minimo si aggira sui 40° corrispondenti a $V_{\text{0} \text{max}} = 0.9 \text{ V}.$

Se però l'ampiezza della corrente circolante in P3 dovesse aumentare, e di conseguenza venisse superato il precedente valore di tensione, succederebbe che, superato questo valore, il diodo D6 entrerebbe in conduzione, la tensione V φ max aumenterebbe, e di conseguenza aumenterebbe anche l'angolo di fase parzializzato, e il risultato finale sarebbe una minore circolazione di corrente nel triac, e quindi nel motore. Il valore limite assumibile da questa corrente può essere regolato agendo su P3.

Per tenere sotto controllo la temperatura del motore si provvede a confrontare, servendosi di K3, la tensione presente sul partitore formato da R1 e R2 $(33 \text{ k}\Omega/120 \text{ k}\Omega)$ con la tensione del partitore comprendente il termistore NTC. Se venisse raggiunta una temperatura di circa 100° C, K3 commuterebbe su un livello basso, abbassando in questo modo tramite il diodo D7, la tensione presente sul termistore NTC la quale attraverso l'ingresso E/A dell'integrato, bloccherebbe gli impulsi di innesco applicati al triac.

Le condizioni di funzionamento iniziali potranno essere ristabilite soltanto quando il tutto si sarà raffreddato al disotto del valore di entrata in funzione del termistore NTC, e dopo aver azionato nuovamente l'interruttore on/off.

Regolatore di giri per trapani

Il circuito per la regolazione della velocità dei motori dei trapani (figura 5) funziona così. Il segnale fornito dalla dinamo tachimetrica viene raddrizzato, spianato e applicato all'ingresso di comando dell'integrato (terminale 7). In questo caso, l'amplificazione del segnale tachimetrico effettuata dall'operazionale OP dipenderà dall'ampiezza che il segnale tachimetrico potrà avere ancora in corrispondenza del più basso numero dei giri del motore, e dalla stabilità dell'anello di regolazione (anello chiuso).

Per aumentare il numero dei giri occorre girare in antiorario e cioè verso 0, il potenziometro P1. In questa maniera, la tensione di comando diventerà più piccola, e corrispondentemente diventerà più grande l'angolo di circolazione di corrente che in definitiva, farà

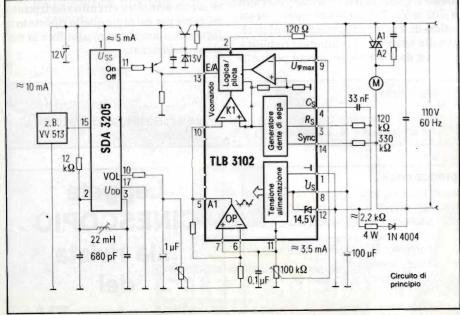


Fig. 6 - Sistema di controllo dei giri di un motore a parzializzazione di fase (TLB 3102) attivato mediante telecomando a raggi infrarossi (SDA 3205).

girare più velocemente il motore. Il numero dei giri del motore e la tensione tachimetrica aumenteranno fino a quando non si ristabilirà di nuovo l'equilibrio tra angolo di fase e ampiezza del segnale tachimetrico (e cioè tensione di comando).

Compito del circuito di avvio dolce è di far partire lentamente il motore dopo che il circuito è stato chiuso. Per ottenere ciò occorre aprire l'interruttore S1; di conseguenza, la tensione ai capi di R6 comincerà a diminuire in quanto C3 comincierà a caricarsi; ciò provocherà, a sua volta, un graduale aumento dell'angolo di circolazione di corrente nel triac e nel motore, e corrispondentemente una partenza lenta del motore fino a che quest'ultimo raggiungerà il numero dei giri prefissato.

Regolazione dei giri di un motore attuata con il sistema a parzializzazione di fase azionato mediante telecomando a infrarossi

Il sistema è molto interessante ed è riportato in figura 6.

È stato possibile realizzarlo per il fatto che il circuito integrato SDA 3205, (ricevitore di radiazioni infrarosse) posside un'uscita digitale/analogica, la quale, previo livellamento mediante una rete LC, è in grado di fornire una tensione di comando stabile che potrà essere utilizzata per tutti i sistemi di azionamento e di controllo dei motori universali, dei quali ci siamo fino ad ora occupati.

A causa dell'elevato assorbimento di corrente richiesto dall'unità ricevente ad infrarossi, un'alimentazione diretta dalla rete è pensabile soltanto nel caso di una tensione di rete a 125 V, in quanto in questo caso la potenza dissipata nel resistore in serie non sarebbe ancora troppo elevata. Nel caso di tensione di rete a 220 V, la tensione di alimentazione dovrebbe essere ottenuta ricorrendo ai sistemi convenzionali, e cioè trasformatore di rete, diodi, condensatori di livellamento ecc.

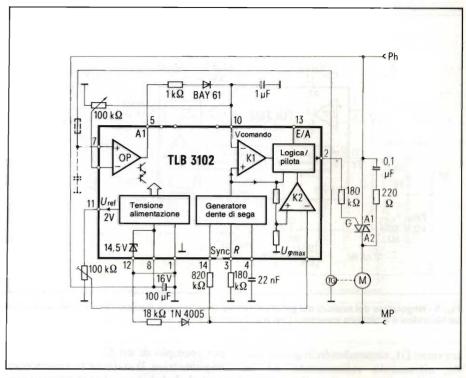


Fig. 7 - Semplice sistema di regolazione della potenza a parzializzazione di fase per motori muniti di generatore tachimetrico a basso segnale di uscita.

Per realizzare la funzione desiderata occorrerà codificare il trasmettitore secondo le tabelle riportate nei relativi data sheet.

Circuito a parzializzazione di fase per motori con tensione tachimetrica molto bassa

Quest'ultima applicazione del TBL 3102 (figura 7) riguarda quei motori muniti di generatore tachimetrico a basso segnale di uscita (e cioè inferiore a 700 mV). Per adattare questi bassi valori di tensione tachimetrica al livello della tensione di pilotaggio richiesta (che va da 1 a 4 V), occorrerà pertanto

servirsi dell'operazionale OP, incorporato nel circuito integrato, e utilizzarlo come amplificatore e raddrizzatore della tensione tachimetrica. In presenza di segnali tachimetrici di maggiore ampiezza occorrerà però stare molto attenti a far sì che non vengano oltrepassati i limiti delle tensioni ammissibili all'ingresso dell'operazionale OP (da -0.3 V fino a Vs - 3 V) il che darebbe luogo ad un funzionamento non corretto. In questo caso si consiglia di ricorrere ad un semplice circuito raddrizzatore, come per esempio quello riportato in figura 5, e amplificare alla fine la tensione raddrizzata.

Bibliografia

H. Bicher, Siemens. Controllo della potenza con il TLB 3101. Selezione di Tecniche Elettroniche N. 3 1983 pag. 71.

Saldatore per produzione

La Weller Temtronic ha inserito nell'apparecchiatura saldante EC 2002 un quadrante a lettura digitale che consente di impostare o leggere in modo preciso (sino all'unità di grado) le reali temperature di lavoro. La tolleranza delle temperature è \pm 2%.

Nella EC 2002 è possibile separare l'unità di controllo dal supporto dello stilo, consentendo di sistemarli nel modo più comodo per l'operatore.

Le caratteristiche più importanti del saldatore, che è conforme alle norme tecniche di sicurezza, sono: scala di controllo temperature da 50 a 450° C, controllo ottico della fase di riscaldamento per mezzo di un punto rosso intermittente, elevata riserva di energia, alto isolamento della resistenza di riscaldamento, bilanciamento dei potenziali.

Leggete CINESCOPIO ...la rivista del riparatore TV

ABBONARSI. UNA BUONA ABITUDINE.

Abbonarsi è sempre una buona abitudine, ma ciò vale ancora di più se le riviste sono JCE. I motivi sono semplici.

Abbonandosi, si ricevono le riviste preferite a casa propria almeno una settimana prima

che le stesse appaiano in edicola.

Si ha la **certezza di non perdere alcun numero** (c'è sempre qualche cosa d'interessante nei numeri che si perdono...) Il nostro ufficio abbonamenti, infatti, rispedisce tempestivamente eventuali copie non giunte, dietro semplice segnalazione anche telefonica.

Si risparmia fino al 35% e ci si pone al riparo da futuri aumenti di prezzo pressoché certi

in questa situazione di mercato.

Ma le riviste JCE offrono anche di più: la tessera negozi convenzionati JCE 1984, per esempio, un privilegio che dà diritto a sconti speciali su determinati prodotti in molti negozi italiani.

Un libro in omaggio e lo sconto del 20-30% su molti altri libri di elettronica. Oppure lo sconto del 10%, valido tutto l'anno su tutti i libri, novità comprese, distribuiti dalla JCE. Diritto a ricevere preziosissime opere, qualche esempio: il VI volume degli Appunti di Elettronica, la pubblicazione a fascicoli che ha riscontrato grandissimo favore.

Le nuove Schede di Riparazione TV 1984 tanto utili a tecnici e autodidatti.

Il 2º volume Selezione di progetti elettronici con tanti circuiti da realizzare scelti fra i migliori pubblicati e di sicuro funzionamento.

E... infine la grande possibilità di vincere milioni in premi partecipando al favoloso Concorso 1984.

Concludendo, se siete interessati all'elettronica entrate anche voi nella élite degli abbonati alle riviste JCE. Una categoria di privilegiati.

Abbonarsi alle riviste JCE è proprio un affare!

LE VANTAGGIC ABBON/

Ogni rivista JCE è "leader" indiscusso nel settore specifico, grazie alla ultra venticinquennale tradizione di serietà editoriale.

Sperimentare è la più fantasiosa rivista italiana per gli amatori e gli specialisti di elettronica nei più svariati campi, la rivista presenta degli articoli dedicati al personal computer con particolare riguardo al più diffuso di essi: Il Sinclair. Una vera e propria miniera di "idee per chi ama far da sé".

Selezione di Tecniche elettroniche è da decenni la più apprezzata e diffusa rivista italiana di elettronica che risponde mensilialiana di elettronica di chi opera nei settori mente alle esigenze di chi opera nei settori mente alle esigenze di chi opera nei settori mente alle esigenze di chi opera nei settori di più come raccolta del mecaratterizzerà di più come raccolta del mecaratterizzera di più come raccolta di più come raccolta del mecaratter

Electronic Games l'ultima nata delle riviste JCE. È l'edizione italiana della prima e più diffusa rivista americana di Giochi Elettronici. La rivista a soli pochi mesi dall'uscita è già largamente affermata presso il folto pubblico di appassionati di "Videogames".

Millecanali la prima rivista italiana di broadcast, creò fin dal primo numero scalpore ed interesse. Oggi, grazie alla sua indiscussa professionalità, è la rivista che "fa opinione" nell'affascinante mondo delle radio e televisioni.

Il Cinescopio la rivista che tratta mensilmente i problemi dell'assistenza radio TV e dell'antennistica. Un vero strumento di lavoro per i radioteleriparatori, dai quali è largamente apprezzata.

Abbonamento annuo a SINGOLE riviste

□ SPERIMENTARE L. 28.000 anziché L. 35.000

□ SELEZIONE L. 29.000 anziché L. 35.000

☐ CINESCOPIO L. 31.000 anziché L. 38.500

☐ MILLECANALI L. 32.000 anziché L. 38.500

□ ELECTRONIC GAMES L. 24.000 anziché L. 30.000

Abbonamento annuo a DUE riviste

Ulteriore sconto di <u>L. 2.000</u> sulla somma dei prezzi di abbonamento delle singole riviste.

(es.: **SP*** + **SE***) L. 57.000 - L. 2.000 = L.55.000

Abbonamento annuo a TRE riviste

Ulteriore sconto di <u>L. 4.000</u> sulla somma dei prezzi di abbonamento sulle singole riviste.

(es.: SP + SE + CN*) L. 88.000 - L. 4.000 = L. 84.000

Abbonamento annuo a QUATTRO riviste

Ulteriore sconto di L. 8.000 sulla somma dei prezzi di abbonamento sulle singole riviste.

(es.: SP + SE + CN + MC*) L. 120.000 -L. 8.000 = L. 112.000

Abbonamento annuo a tutte e CINQUE le riviste

Ulteriore sconto di <u>L. 10.000</u> sulla somma dei prezzi di abbonamento sulle singole riviste.

(es.: $SP + SE + CN + MC + EG^*$) L. 144.000 - L. 10.000 = L. 134.000

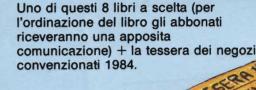
LEGENDA:

SP = SPERIMENTARE, SE = SELEZIONE, CN = CINESCOPIO, MC = MILLECANALI, EG = ELECTRONIC GAMES

DSE PROPOSTE ENTO

Per i versamenti ritagliate
il modulo c/c postale
inserito in questa rivista,
completatelo, Indicando
anche il mese da cui
l'abbonamento dovrà
decorrere. decorrere. È possibile effettuare

E possibile effettuare versamenti anche sul ccp n. 315275 intestato a JCE, Via del Lavoratori, 124 - 20092 Cinisello B. oppure inviare un vaglia al o assegno postale al nostro ufficio abbonamenti.



Privilegi per tutti gli abbonati

Ulteriori privilegi riservati agli abbonati a due riviste:

Per combinazioni comprendenti la rivista

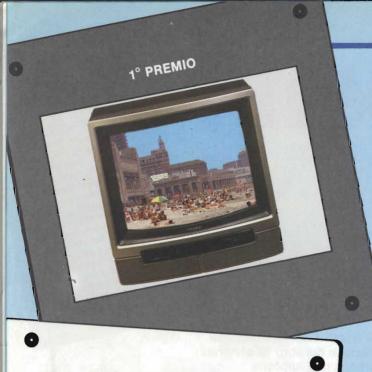
Ulteriori privilegi riservati agli abbonati a tre riviste:

Entrambi i volumi offerti

Ulteriori privilegi riservati agli abbonati a quattro riviste

_2000

Ulteriori privilegi riservati agli abbonati a cinque riviste



-10000

44 FAVOL EALTRI 20 PER GLI

3° PREMIO

DAL 5° AL 24° PREMIO

DAL 25° AL 44°

AUT. MIN. D.M. N. 4/247401 DEL 27-10-83

OSI PREMI SONY DO PREMI BBONATI 10 2 RIVISTE.

Favoloso concorso rivolto agli abbonati ad almeno due riviste J.C.E.

Con la campagna abbonamenti 1984 ritorna il Grande Concorso Abbonamenti JCE, dotato di prenzi sempre più ricchi, sempre più stimolanti. Molti di voi sono già stati tra i fortunati vincitori delle passate edizioni, altri potranno esserlo ora. Partecipare è facile, basta sottoscrivere l'abbonamento ad almeno due riviste JCE entro il 29.2.1984 e... aspettare fiduciosi. Esiste, però, anche la possibilità di aiutare la fortuna a bussare alla vostra porta (in questo caso al vostro codice di abbonati). Come? ... Semplice! Basta abbonarsi a tre o più riviste. L'abbonato a tre riviste, infatti, ha diritto, per il sorteggio, all'inserimento del suo codice due volte, quindi doppia possibilità di vincita. L'abbonato a quattro riviste avrà tripla possibilità di vincita ecc. Cosicché l'abbonato a tutte le riviste avrà diritto a ben quattro inserimenti e quindi a quattro possibilità di vincita. Insomma la differenza che c'è tra l'acquistare uno solo o quattro biglietti di una lotteria particolare, riservata ad una ristretta e privilegiata élite, quella degli abbonati JCE. Stimolante vero? Allora non perdete altro tempo! Utilizzate l'apposito modulo di conto corrente postale inserito in questo fascicolo o inviate direttamente l'importo al nostro ufficio abbonamenti. Non ve ne pentirete! Effettuate i versamenti oggi stesso, vi assicurerete così la certezza di ricevere tempestivamente le riviste già dal primo numero del nuovo anno, evitando possibili disguidi dovuti al ritardo con cui i competenti uffici PT trasmettono i conti correnti postali.

1° PREMIO

TV Color Sony 27" mod. 2724"

2° PREMIO

Videoregistratore Sony mod. SL-C6EC

3° PREMIO

TV Color Sony 16" mod. 1614

4° PREMIO

Mini-coordinato Sony Hi-Fi mod. FH-7

DAL 5° AL 24° PREMIO Lettore di cassette Sony mod. WM4

Lettore di cassette Soriy mod. Wivi4

DAL 25° AL 44° PREMIO Ricevitore tascabile Sony mod. ICF-210 W

DAL 45° AL 144° PREMIO

Abbonamento 1985 a riviste JCE DAL 145° AL 244° PREMIO

Buono di L. 15.000 per l'acquisto di libri JCE

REGOLAMENTO

1) L'editrice JCE promuoe un concorso a premi in occasione della campagna abbonamenti 1984.
2) Per partecipare al concorso è sufficiente sottoscrivere un abbonamento 1984 ad almeno due delle cinque riviste JCE. 3) È condizione essenziale per l'ammissione alla estrazione del premi sottoscrivere gli abbonamenti entro e non oltre il 292 1984. 4) Gli abbonati a più di due riviste JCE avranno diritto all'inserimento del proprio nominativo, per l'estrazione, tante volte quante sono le riviste cui sono abbonati meno una. 5) L'estrazione dei premi indicati in questo annuncio avverrà presso la sede JCE entro il 31.5.1984. 6) L'estrazione dei premi del concorso si svolgerà un'unica soluzione. 7) L'etenco dei vincitori e dei premi in ordine progressivo, sarà pubblicato dopo l'estrazione sulle riviste Sperimentare, Selezione di Tecniche etettroniche, Millecanali, il Cinescopio e Electronic Games La JCE, inoltre, ne darà commicazione sortita ai singoli vincitori. 8) I premi verranno messi a disposizione degli aventi diritto, entro 60 giorni dalla data di estrazione. 9) I dipendenti, i loro parenti, i collaboratori della JCE sono esclusi dal concorso.

Manuale pratico del Riparatore Radio TV
Il libro frutto dell'esperienza dell'autore maturata in oltre due decenni di attività come teleriparatore, è stato redatto in forma piana e sintetica per una facile consultazione.
Cod. 701P
L. 18.500 (Abb. L. 12.950)

30 Programmi Basic per lo ZX 80

Programmi pronti all'uso che si rivolgono soprattutto ai non programmatori, quale valido ausilio didattico, nonchè prima implementazione del BASIC studiato, ma che possono essere, da parte dei più esperti, anche base di partenza per ulteriori elaborazioni.

Cod. 5000

L. 3.000 (Abb. L. 2.100)

Junior Computer Vol 1-Vol 2

Junior Computer è il microelaboratore da autocostruire su un unico circuito stampato. Il sistema base e questi libri sono l'occorrente per l'apprendimento. Prossimamente verranno pubblicati altri volumi relativi all'espandibilità del sistema.

Cod. 3001

L. 11.000 (Abb. L. 7.700)

Cod 3002

L. 14.500 (Abb. L. 11.600)

Il Moderno Laboratorio Elettronico

Autocostruzione di tutti gli strumenti iondamentali; alimentatori stabilizzati, multimetri digitali, generatori sinusoidali ed a onda quadra, iniettore di segnali, provatransistor, wattmetri e millivoltmetri.

Cod. 8004

L. 6.000 (Abb. 4.200)

Guida alla Sostituzione dei Semiconduttori nei TVC

Equivalenze di semiconduttori impiegati su 1200 modelli di televisori di 47 fabbricanti diversi.

Cod. 6112

L. 2.000 (Abb. L. 1.400)

Transistor Cross-Reference Guide

Circa 5.000 equivalenze fra transistori europei, americani e giapponesi, con i relativi parametri elettrici e meccanici.

Cod. 6007

L. 8.000 (Abb. L. 5.600)

Audio & HI-FI

Una preziosa guida per chi vuole conoscere tutto sull'HI-FI. Cod. 703D L. 6.000 (Abb. L. 5.400)

TTL IC Cross - Reference Manual

Il prontuario fornisce le equivalenze, le caratteristiche elettri-che e meccaniche di pressochè tutti gli integrati TTL sinora prodotti dalle principali case mondiali, comprese quelle giap-

ponesi. Cod. 6010

L. 20.000 (Abb. L. 14.000)

Il libro propone una moltitudine di progetti dal più semplice al più sofisticato con particolare riferimento a circuiti per applica-zioni domestiche, audio, di misura, giochi elettronici, radio, modellismo, auto e hobby. Cod. 6009

L. 12.500 (Abb. L. 8.750)

Manuale di Sostituzione dei Transistori Giapponesi

Il libro raccoglie circa 3000 equivalenze fra transistori giappo-

nesi. Cod. 6005

L. 5.000 (Abb. L. 3.500)

Le Radiocomunicazioni

Ciò che si deve sapere sulla propagazione e ricezione delle onde em, sulle interferenze reali od immaginarie, sui radiodisturbi e loro eliminazione, sulle comunicazioni extra-terrestri

ecc. Cod. 7001

L 7.500 (Abb. L. 5.250)

Digit 1

Il libro mira a insegnare i concetti fondamentali di elettronica con spiegazioni semplici. Esperimenti pratici utilizzanti una piastra sperimentale a circuito stampato consentono un'introduzione graduale all'elettronica digitale.

Cod. 2000 L. 7.000 (Abb. L. 4.900)

Prosieguo naturale del Digit 1, il libro presenta oltre 500 circuiti: dal frequenzimetro al generatore di onde sinusoidali - triango-lari - rettangolari; dall'impianto semaforico alla pistola lumino-

L. 6.000 (Abb. L. 4.200)

Cod. 701P L. 18.500 (Abb. L. 12.950)

RIPARATORE RADIO-TV

Cod. 5000 L. 3.000 (Abb. L. 2.100)

Tabelle Equivalenze Semiconduttori e Tubi Elettronici Professionali

Equivalenti Siemens di transistori, diodi, led, tubi elettronici professionali e vidicons.

Cod. 6006

L 5.000 (Abb. 3.500)

Costruiamo un Microelaboratore Elettronico

Per comprendere con naturalezza la filosofia dei moderni mi-croelaboratori e imparare a programmare quasi senza accor-

gersene. Cod. 3000

L. 4.000 (Abb. L. 2.800)

Selezione di Progetti Elettronici

Una selezione di interessanti progetti pubblicati sulla rivista "Elektor". Ciò che costituisce il "trait d'union" tra le varie realizzazioni proposte e la varietà d'applicazione, l'affidabilità di funzionamento, la facilità di realizzazione, nonchè l'elevato contenuto didattico.

Cod. 6008

L. 9.000 (Abb. L. 6.300)

Accessori per Autoveicoli

Dall'amplificatore per autoradio, all'antifurto, dall'accensione, elettronica, al plurilampeggiatore di sosta, dal temporizzatore per tergicristallo ad altri ancora.

Cod. 8003

L 6.000 (Abb. L. 4.200)

L. 6.000 (Abb. L. 4.200)

Le Luci Psichedeliche
Il libro descrive apparecchi psichedelici provati e collaudati, realizzazione di generatori psichedelici sino a 6 kW, flash elettronici, luci rotanti etc.
Cod. 8002
L. 4.500 (Abb. L. 3.150)

Alla Ricerca dei Tesori

Alld Ricerca del Tesori
Il primo manuale editio in Italia che tratta la prospezione elettronica. Il libro, in oltre 110 pagine ampiamente illustrate spiega
tutti i misteri di questo hobby affascinante. Dai criteri di scelta
dei rivelatori, agli approcci necessari per effettuare le ricerche.
Cod. 8001

L. 6.000 (Abb. L. 4.200)

TV Service 100 riparazioni TV illustrate

e commentate

e commentate

Dalle migliala di riparazioni che si effettuano in un moderno
laboratorio TV, sono assai poche quelle che si discostano dalla
normale "routine" e sono davvero gratificanti per il tecnico
appassionato. Cento di queste "perle" sono state raccolte in
questo libro e proposte all'attenzione di chiunque svolga per
hobby o per mestiere il servizio di Assistenza TV.

Cod. 7000

L. 10.000 (Abb. L. 7.000)

Il volume consiste in una raccolta di consulenze tecniche ri-chieste da riparatori e antennisti al Ceniart, il Centro Informa-zioni per l'Assistenza radio-TV.

Cod. 7002

L. 10.500 (Abb. L. 7.350)

Cod. 6007 L. 8.000 (Abb. L. 5.600)

Cod. 2000 L. 7.000 (Abb. L. 4.900)

Cod. 8002 L 4.500 (Abb. L. 3.150)

Cod. 6015 L. 10.000 (Abb. L. 7.000)

L. 6.000 (Abb. L. 5.400)

Cod. 6011 L. 6.000 (Abb. L. 4.200)

Cod. 8001 L. 6.000 (Abb. L. 4.200)

Cod. 7003 L. 16.000 (Abb. L. 11.200)

BBONATI 46 LIBR CONTO 30% E...

Cod. 3001 L. 11.000 (Abb. L. 7.700)

Cod. 3002 L. 14.500 (Abb. L. 11.600)

Cod. 6112 L. 2.000 (Abb. L. 1.400)

Cod. 6010 L. 20.000 (Abb. L. 14.000)

Cod. 6005 L. 5.000 (Abb. L. 3.500)

Cod. 7001 L. 7.500 (Abb. L. 5.250)

Cod. 6006 L. 5.000 (Abb. 3.500)

Cod. 3000 L. 4.000 (Abb. L. 2.800)

Cod. 6008 L. 9.000 (Abb. L. 6.300)

Cod. 8003 L. 6.000 (Abb. L. 4.200)

Cod. 7000 L. 10.000 (Abb. L. 7.000)

Cod. 7002 L. 10.500 (Abb. L. 7.350)

Cod. 6014 L. 12.500 (Abb. L. 8.750)

Cod. 2300 L. 8.000 (Abb. L. 5.600)

Cod. 8006 L. 11.500 (Abb. L. 8.050)

Cod. 2002 L. 8.400 (Abb. L. 5.800)

Cod. 8000 L. 4.000 (Abb. L. 2.800)

Cod. 309A L. 17.000 (Abb. L. 11.900)

273 Circuiti" è una raccolta di schemi per il tecnico di laboratorio e l'hobbista di elettronica. I circuiti sono tutti moito semplici e
facili da realizzare. Ve n'è per tutti i gusti: per uso domestico, per
autovetture, per i fissati dell'audio, per giocatori inveterati, per
gli ossessionati dalle misure e dagli alimentatori, per gli appassionati di fotografia o di modellismo ecc.

Cod. 6014

L. 12.500 (Abb. L. 8.750)

Appunti di Elettronica Vol. 1 - Vol. 2 - Vol. 3 - Vol. 4

Voi. 1 - Voi. 2 - Voi. 3 - Voi. 4
Un'opera per comprendere facilmente l'elettronica e i principi
ad essa relativi. I libri sono costituiti da una raccolta di fogli
asportabili e consultabili separatamente, ognuno dei quali tratta un singolo argomento.
Grazie a questa soluzione l'opera risulta continuamente aggiornabile con l'inserimento di nuovi fogli e la sostituzione di
avuelli che diperarpas obsoleti

uelli che diverranno obi	soleti.
od. 2300	L. 8.000 (Abb. L. 5.600)
od. 2301	L. 8.000 (Abb. L. 5.600)
od. 2302	L. 8.000 (Abb. L. 5.600)
od. 2303	L. 8.000 (Abb. L. 5.600)

Manuale di sostituzione fra transistori europei,

mericani e giapponesi

Eccovi il manuale che vi serve per risolvere, nella massima
parte dei casi, i problemi della sostituzione: vi si trovano, per
ogni tipo di transistore, le equivalenze fra le produzioni europee, americane e giapponesi.

Cod. 6015

L. 10.000 (Abb. L. 7.000)

99 riparazioni TV illustrate e commentate

Questa seconda serie di interventi "dal vivo", (la prima serie era contenuta in un libro pubblicato due anni fa e chiamato 100 Riparazioni TV illustrate e Commentate"). Contiene interventi effettuati nel laboratorio del Cenlart durante questi ultimi anni. Naturalmente si tratta soltanto di quelli tecnicamente più significativi. Due indici posti all'inizio del libro concorrono a facilitare le ricerche delle schede interessate.

Cod. 7003 L. 16.000 (Abb. L. 11.200)

La pratica delle misure elettroniche

Questo libro getta uno sguardo nella moderna tecnica metrica. Non è la teoria che viene messa nel massimo rilievo, ma l'informazione orientata al lato pratico.

L. 11.500 (Abb. L. 8.050) Cod. 8006

Corso di progettazione dei circuiti a semiconduttori
Questo corso costituisce per il dilettante interessato una guida attraverso i meandri della moderna tecnica circuitale dei semiconduttori.
Per mezzo di chiare notizie pratiche il lettore sarà in grado di progettare e calcolare da se dei semplici stadi amplificatori.
Cod. 2002
L. 8.400 (Abb. L. 5.800)

Esercitazioni digitali

L'intento di questi esercizi digitali è principalmente quello di fornire un mezzo di insegnamento delle tecniche digitali, mediante esercitazioni dettagliatamente descritte in tavole didatti-

che. Cod. 8000

L. 4.000 (Abb. L. 2.800)

Principi e tecniche di elaborazione dati

Una trattazione chiara e concisa dei principi base di flusso e della gestione in un sistema di elaborazione elettronica.

Cod. 309A

L. 17.000 (Abb. L. 11.900)

Microelettronica: la Nuova Rivoluzione Industriale

L'autore cerca di prevedere lo scenario tecnico-economico-sociale che si andrà via via determinando per l'avvento dei Cod. 315P

L. 11.500 (Abb. L. 9.200)

Elementi di trasmissione dati

Un valido ausilio alla comprensione delle tecniche di comuni-

Cod. 316D

L. 10.500 (Abb. L. 8.350)

Guida alla programmazione in Assembler Z80

sul pico computer

È una guida introduttiva alla programmazione Assembler attra-verso una progressione di esercizi.
Cod. 330D

L. 9,000 (Abb. L. 6,300)

L. 9.000 (Abb. L. 6.300)

Il Bugbook VII

Tecniche d'interfacciamento dei microprocessori

ELEMENTI DI

Cod. 316D L. 10.500 (Abb. L. 8.350)

Cod. 330D L. 9.000 (Abb. L. 6.300)

Cod. 007A L. 17.000 (Abb. L. 11.900)

Permette di capire come un sistema a microprocessore (8080/A, 8080, 8085 e Z80) si interfacci al mondo esterno. Cod. 007A L. 17.000 (Abb. L. 11.900)

Come assemblare un sistema completo a partire dalla fonda-mentale unità centrale di elaborazione, per arrivare, passando per i bus standard (da S100 a IEEE 488), ad un sistema equipag-giato con tutte le periferiche comunemente usate. Cod. 314P.

Cod. 315P L. 11.500 (Abb. L. 9.200)

MICROELETTRONICA:

Cod. 314P L. 25.000 (Abb. L. 17.500)

Cod. 323P L. 27.500 (Abb. L. 19.250)

Cod. 320P L. 25.000 (Abb. L. 17.500)

Cod. 301P L. 11.000 (Abb. L. 7.700)

8080A/8085 programmazione in linguaggio Assembly

In linguaggio Assembly dell'8080/8085 come mezzo di un sistema a microcomputer.

Cod. 323P

L. 27.500 (Abb. L. 19.250)

Microprocessori - Dai chip ai sistemi

Il libro si rivolge a tutti coloro che desiderano comprendere i concetti, le tecniche, e i componenti riguardanti il mondo dei microprocessori.

L. 25.000 (Abb. L. 17.500)

I microprocessori e le loro applicazioni: SC/MP Il libro tratta del microprocessore SC/MP visto sia sotto l'aspet-to teorico che pratico (programmi ed applicazioni). Cod. 301P L. 11.000 (Abb. L. 7.700)

DBUG - Un Programma Interprete per la Messa a Punto del Software 8080 Il programma DBUG è un potente strumento di programmazio-ne e di messa a punto dei programmi sia per neofiti che per i

programmatori più esperti. Cod. 313P L. 7.000 (Abb. L. 5.600)

La programmazione dello Z-8000

Descrive in dettaglio l'architettura ed il funzionamento dello Z8000 e la sua famiglia di dispositivi di supporto.

Cod. 321D L. 25.000 (Abb. L. 17.500)

Cod. 313P L. 7.000 (Abb. L. 5.600)

Cod. 321D L. 25.000 (Abb. L. 17.500)

Cod. 324P L. 21.500 (Abb. 15.050)

Cod. 325P 19.000 (Abb. L. 13.300)

Cod. 322P L. 14.000 (Abb. L. 9.800)

Cod. 326P L. 34.000 (Abb. L. 23.800)

Cod. 603B L. 17.000 (Abb. L. 11.900)

Cod. 303D L. 14.000 (Abb. L. 11.200)

CEDOLA DI COMMISSIONE LIBRARIA

Da inviare a JCE - Via del Lavoratori, 124 - 20092 Cinisello Balsamo (MI)

Inviatemi i seguenti libri:

🗆 Pagherò al postino il prezzo indicato nella vostra offerta speciale 🕂 L. 2.000 per contributo fisso spese di spedizione

Codice Libro	Quantità	Codice Libro		Quantità	Codice Libro			•	Quantità	Codice Libro			Quantità	Codice Libro		1	Quantità
																	- 4
																	110

□ Non Abbonato □ Abbonato sconto 30% □ Selezione RTV □ Millecanali □ Sperimentare □ Il Cinescopio ☐ Electronics Games

Programmazione dello Z80 e progettazione

logica
Il libro descrive l'implementazione della logica sequenziale e combinatoria con l'uso del linguaggio assembly all'interno di un sistema a microcomputer basato sullo Z80.

Cod. 324P

L 21.500 (Abb. 15.050)

Programmazione dell'8080
e progettazione logica
Il libro descrive l'implementazione della logica sequenziale e
combinatoria con l'uso del linguaggio Assembly all'interno di
un sistema a microcomputer basato sull'8080.
Cod. 325P
L. 19.000 (Abb. L. 13.300)

TEA - Un editor assembler residente per l'8080/8085

Il programma TEA (Tychen's Editor - Assembler) è senza dubbio un valido contributo per tutti coloro che operano con i suddetti microprocessori.

Cod. 322P

L. 14.000 (Abb. L. 9.800)

Z80 programmazione in linguaggio Assembly

Il libro esamina il linguaggio Assembly dello Z80 come mezzo di un sistema a microcomputer.

Cod. 326P

L. 34.000 (Abb. L. 23.800)

L. 34.000 (Abb. L. 23.800)

La progettazione dei filtri attivi
Scritto per semplificare l'approccio alla progettazione ed alla sperimentazione dei filtri attivi.
Cod. 603B
L. 17.000 (Abb. L. 11.900)

Introduzione al personal e business computing Un'introduzione esauriente e semplice per tutti coloro che non conoscendo nulla, vogliono addentrarsi nell'affascinante mondo del microcomputer.

Cod. 303D L. 14.000 (Abb. L. 11.200)

L. 14.000 (Abb. L. 11.200)

007(0) 4 3 3 CON SCONTO 20%

Telematica - dal viewdata all'office automation

Questo libro intende dare un impulso alla conoscenza della telematica, e si prefigge di offrire al lettore un panorama dei problemi connessi con questa disciplina e con i relativi aspetti

L. 19.000 (Abb. L. 15.200)

Computer Grafica

Quest'opera, con il suo rigore informativo e scientifico, si pone come fondamentale nel carente panorama italiano. Le informazioni e gli spunti contenuti nel testo contribuiranno certamente alla divulgazione ed alla formazione di idee nuove e feconde.

Cod. 519P

L. 29.000 (Abb. L. 23.200)

Dizionario di informatica inglese/italiano/ tedesco, italiano/inglese, tedesco/inglese Questo dizionario raccoglie circa 15.000 termini che costitui-scono l'attuale patrimonio terminologico inglese, italiano e te-desco dell'informatica e delle tecniche ad essa connesse. Cod. 100H

Introduzione ai microcomputer - Il libro

del principiante - Vol. 0
Un libro scritto per chi vuole o deve imparare a conoscere presto e bene i microcomputer.
Cod. 304A
L. 16.000 (Abb. L. 12.800)

Introduzione di microcomputer - Il libro dei Concetti Fondamentali - Vol. 1
Presenta la struttura logica fondamentale su cui sono basati i sistemi a microcomputer.

Cod. 305A

L. 18.000 (Abb. 1...14.400)

DICTIONARY OF COMPUTER SCIENCE DIZIONARIO DI INFORMATICA

WÖRTERBUCH DER INFORMATIK

Impariamo a programmare in BASIC con il PET/CBM

Il libro costituisce un vero e proprio corso didattico di program-

Cod. 506A

L. 11.500 (Abb. L. 9.200)

Programmare in BASIC

Descrive in modo metodico il BASIC delle tre macchine più diffuse: Apple, PET, TRS 80.

Cod. 513A

L. 8.000 (Abb. L. 6.400)

Corso di elettronica fondamentale

Testo ormai adottato nelle scuole per l'alto valore didattico, fa "finalmente" capire l'elettronica dalla teoria atomica ai transi-

Cod. 201A

L. 17.000 (Abb. L. 13.600)

Il BASIC e la gestione dei file - Metodi pratici

Il libro si rivolge in modo particolare a chi già conosce il BASIC e desidera poter realizzare programmi che prevedano l'uso di file residenti su disco.

Cod. 515H

L. 11.000 (Abb. L. 8.800)

Applicazioni del 6502 Vengono descritte le tecniche e i programmi per applicazioni tipiche del 6502. Cod. 5048 L. 15.500 (Abb. L. 12.400)

TELEMATIC.

Guida al Sinclair ZX81 ZX80 e nuova ROM

Un vero e proprio strumento operativo per tutti coloro che vogliono avvicinarsi all'informatica in generale, e imparare la programmazione in BASIC.

Cod. 318B

L. 16.500 (Abb. L. 13.200)

L. 16.500 (Abb. L. 13.200)

Programmazione del 6502

Giochi con il 6502 - Tecniche

Un testo autonomo e completo per imparare la programmazione in linguaggio Assembler, il 6502.

Cod. 503B

L. 25,000 (Abb. 1, 20,000)

di programmazione avanzate
I giochi costituiscono il modo pratico e divertente per assimilare le tecniche di programmazione studiate.
Cod. 505B
L. 19.500 (Abb. L. 15.600)

L. 25.000 (Abb. L. 20.000)

Esperimenti con TTL e 8080A vol. 1 e vol. 2

Questi libri che costituiscono una pietra miliare nella divulga-zione e nell'insegnamento dell'elettronica digitale e delle tecni-che di utilizzo dei microprocessori.

L. 22.000 (Abb. L. 15.400)

L. 22.000 (Abb. L. 15.400) Cod. 006

Scritto per tutti coloro che vogliono o hanno necessità di imparare l'elettronica ma non possono dedicare ad essa anni di

Cod. 202A

L. 16.000 (Abb. L. 12.800)

tudiate. L. 19.500 (Abb. L. 15.600)

Comprendere l'elettronica a stato solido

Il Bugbook III - Interfacciamento

e programmazione del microcomputer 8080
Rappresenta lo strumento ideale per acquisire nozioni e strumenti di lavoro sul sistema base e microprocessoro.
Cod. 003A
L. 19.000 (Abb. L. 13.900) L. 19.000 (Abb. L. 13.300)

Alla scoperta del TI 99/4A

Non è importante conoscere i "calcolatori", basta leggere le facili istruzioni di questo manuale.

Cod. 319D

L. 16.000 (Abb. L. 12.800)

L. 16.000 (Abb. L. 12.800)

Apple II - Guida all'uso

Se possedete un Apple e volete conoscerlo a fondo non dovre-te più affannarvi nella ricerca su "mille" testi di tutte le informa-

zioni necessarie. Cod. 331P

L. 26.000 (Abb. L. 20.800)

DAI-manuale del microcomputer

Lo scopo di questo libro è permettere di "usare" il DAI immedia-tamente dopo la sua installazione.

Cod. 318D

L. 9.000 (Abb. 1. 7.200)

Impariamo a programmare in BASIC con il VIC/CBM

Imparerete divertendovi con le possibilità grafiche e sonore del VIC 20. L. 12.500 (Abb. L. 10.000) Cod. 507A

Come programmare Insegnare un metodo è lo scopo del libro. Cod. 511A L. 12.000 (Abb. L. 9.600)

Introduzione al BASIC

Un vero e proprio corso di BASIC. Facile da leggere e imparare.

Cod. 502A

L. 21.000 (Abb. L. 16.800)

66 programmi per ZX81 e ZX80 con nuova ROM + hardware
Chi possiede uno ZX81 o anche uno ZX80 con nuova ROM, troverà senz'altro in questo libro molte cose utili.
Cod. 520D L. 12.000 (Abb. L. 9.600)

50 esercizi in BASIC

Una raccolta completa e progressiva di esercizi riguardanti matematica, gestione, ricerca operativa, gioco e statistica.

Cod. 521A

L. 13.000 (Abb. L. 10.400)

Giocare in BASIC

Come avvicinarsi al BASIC in modo nuovo: giocando.
Cod. 522A
L. 20.000 (Abb. L. 16.000)

Programmi di matematica e statistica
Leggendo questo libro il lettore potrà formarsi quella logica di
base indispensabile per la risoluzione di problemi di matematica e statistica.

L. 16.000 (Abb. L. 12.800)

Programmi pratici in BASIC

Quante volte avete provato a scrivere un programma. Sapete che il programma che vi occorre è stato indubbiamente già scritto da migliaia di persone prima di vol?

Cod. 550D

L. 12.500 (Abb. L. 10.000)

75 programmi in BASIC per il vostro computer Il volume raccoglie ben 75 programmi originali scritti in BASIC generico, al fine di renderli direttamente ed immediatamente utilizzabili, sulla maggior parte dei personal computer.

Cod. 551D

L. 12.000 (Abb. L. 9.600)

Programmare in Assembler

E possibile, in poco tempo e con semplicità, mediante numerosi esempi pratici apprendere i rudimenti che consentano poi di programmare autonomamente.

Cod. 329

L. 10.000 (Abb. L. 8.000)

Soluzione di problemi con Pascal

L'obiettivo principale di questo libro è di insegnare al lettore un approccio disciplinato alla soluzione di problemi usando un

Cod. 512P L. 28.000 (Abb. L. 22.400)

Programmare in Pascal

Lo scopo del libro è di fare il punto sul Pascal.

Cod. 514A

L. 14.000 (Abb. L. 11.200)

Introduzione al Pascal

Un vero e proprio caso di Pascal, facile da leggere e da impara-

Cod. 516A

L. 30.000 (Abb. L. 24.000)

Impariamo il Pascal

Un libro di divulgazione, incentrato sull'autoapprendimento del

Cod. 501A L. 11.500 (Abb. L. 9.200)

Pascal - manuale e standard del linguaggio

L'edizione italiana del più famoso libro sul Pascal. Cod. 500P L. 11.500 (Abb. L. 9.200)

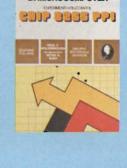
Dal Fortran IV al Fortran 77

Il libro è diretto a tutti coloro che devono affrontare la programmazione di tipo tecnico-scientifico o che, già esperti, desiderano approfondire le conoscenze del linguaggio.

Cod. 517P

L. 18.000 (Abb. L. 14.400)





CP/M con MP/M

CP/M Con MP/M
Questo libro rende semplice l'uso del CP/M. (Le versioni esaminate del CP/M sono il CP/M 1.4 - il CP/M 2.2. - il nuovo
sistema operativo multiutente MP/M).
Cod. 510P
L. 22.000 (Abb. L. 17.600)

Il testo è costituito da un unico capitolo, indicato come 11° intendendolo così come parte complementare del Bugbook II.

Cod. 021A L. 4.500 (Abb. L. 3.600)

Interfacciamento di microcomputer esperimenti utilizzanti il chip 8255 PPI I modi di operare del PPI riflettono le tecniche di I/O parallelo usate con la maggior parte dei microcomputer. Cod. 004A L. 9.600)

Usare il microprocessore
Il testo ha come scopo quello di far capire l'utilizzo più razionale del microprocessore.
Cod. 327A
L. 17.000 (Abb. L. 11.900)

Programmazione dello Z-80 Ideato come testo autonomo e completo per imparare la programmazione in linguaggio Assembler, usando lo Z80.
Cod. 328D L. 26.000 (Abb. L. 20.800)

Nanobook Z80 Vol. 1 - Tecniche
di programmazione
Questo volume è dedicato al software dello Z80 (naturale sviluppo sul piano tecnologico e della potenzialità operativa
dell'8080) con particolare riguardo alla programmazione in
linguaggio macchina ed in linguaggio Assembler.
Cod. 301P
L. 17.000 (Abb. L. 13.600)

Nanobook Z80 Vol. 3 - Tecniche
di interfacciamento
Continua la trattazione dello Z80 iniziata con il vol. 1, introducendo ai problemi ed alle tecniche di interfacciamento con gli elementi CPU, PIO (Parallel Input/Output Controller) e CTC (Controller Timer Circuit).
Cod. 312P
L. 20.000 (Abb. L. 16.000)

Corso programmato di elettronica ed elettrotecnica

Il corso articolato in 40 fascicoli per complessive 2700 pagine, permeite in modo rapido e conciso l'apprendimento dei concetti fondamentali di elettrotecnica ed elettronica di base, dalla teoria atomica all'elaborazione dei segnali digitali.

Cod. 099A

L. 109.000 (Abb. L. 87.200)

Introduzione di circuiti integrati digitali Il volume "demistifica" finalmente il circuito integrato digitale. Cod. 203A L. 8.000 (Abb. L. 6.400)

Elettronica integrata digitale

Non esiste, in lingua italiana, un libro di testi così. Chiaro, completo, moderno, ma anche rigoroso e didattico.

Cod. 204A L. 30.400)

Manuale pratico di progettazione elettronica
Aiuta a sviiuppare in modo autonomo la comprensione e l'uso
dei circuiti elettronici.
Cod. 205A

L. 30.000 (Abb. L. 24.000)

Circuiti logici e di memoria - Vol. 1 e 2 Un approccio diretto al mondo dell'elettronica digitale. Cod. 001A L. 22.000 (Abb. L. 15.400)

L. 22.000 (Abb. L. 15.400)

I tiristori - 110 progetti pratici
II libro descrive 110 progetti a tiristori. SCR e Triac per le loro
caratteristice elettriche possono essere Impiegati in un'infinità di interessanti applicazioni.
Cod. 606D

Manuale degli SCR Triac ed altri tiristori Vol. 1 Una buona guida alle applicazioni per tutti i progettisti, che utilizzano o utilizzeranno questa famiglia di dispositivi a semi-

L. 24.000 (Abb. L. 19.200)

Progettazione dei circuiti PPL
Oltre ai principi dei circuiti "Phase Locked Loop" (PLL) (anello ad aggancio di fase) offre ben 15 esperimenti di laboratorio.
Cod. 604H
L. 16.000 (Abb. L. 12.800)

Guida ai CMOS

Il libro è stato scritto per tutti coloro che, cresciuti con i disposi-tivi TTL, sono pronti a perseguire i vantaggi dei CMOS. Cod. 605B L. 17.000 (Abb. L. 11.900)

Gli amplificatori di Norton quadrupli LM 3900 e LM 359 con esperimenti Oltre 260 circuiti, e 22 esperimenti realizzati passo passo. Cod. 6108 L. 24.000 (Abb. L. 16.800)

Mostra, attraverso un centinalo di circuiti pratici e numerosi esperimenti, cosa è il Timer 555 e come utilizzarlo da solo o con sitivi.

L. 10.000 (Abb. L. 8.000)

La progettazione dei circuiti op-amp

Il libro riguarda la progettazione ed il funzionamento di circuiti fondamentali di amplificatori operazionali.

Cod. 602B

L. 17.000 (Abb. L. 13.600)

Impiego pratico dell'oscilloscopio

Insegna circa gli oscilloscopi e le misure con gli oscilloscopi, quanto basta per implegare questi strumenti di misura rapidamente e con tutta facilità e precisione.

Cod. 705P

L. 16.000 (Abb. L. 12.800)

Manuale pratico del riparatore radio TV
Questo libro rappresenta un autentico strumento di lavoro per i
teleradioriparatori e gli appassionati di radiotecnica.
Cod. 701P
L. 23.000 (Abb. L. 18.400)

Audio & HI-FI

Una preziosa guida per chi vuole conoscere tutto sull'HI-FI. Cod. 703D L. 7.000 (Abb. L. 4.900)

Manuale pratico di registrazione multipista

Illustra i vantaggi, le possibilità e le modalità d'uso della tecnica di registrazione multipista.

Cod. 704D

L. 10.000 (Abb. L. 8.000)

L. 10.000 (Abb. L. 8.000)

1) Guida mondiale dei transistori

2) Guida mondiale degli amplificatori operazionali

3) Guida mondiale dei transistori ad effetto di campo JFET e MOS

di campo JFET e MOS

Queste tre guide, veramente "mondiali" presentano l'esatto equivalente, le caratteristiche elettriche e meccaniche, i terminali, i campi di applicazione, i produttori e distributori di oltre 20.000 transistori. 5.000 circulti integrati lineari e 2.700 FET europei, americani, giapponesi, inglesi o persino russi.

Cod. 607H

L. 12.000 (Abb. L. 13.600)

Cod. 609H

L. 11.500 (Abb. L. 9.200)

Interfacciamento dell'Apple

Questo libro presenta del reali e sperimentabili circuiti d'interfaccia, e in più il software necessario (in BASIC) per collegare il vostro Apple con il mondo esterno.

Cod. 334B

L. 14.000 (Abb. L. 11.200)

Microprocessori al servizio del management CAD/CAM e nuove tecnologie Protagonista del libro è la tecnologia, il suo sviluppo, le sue prospettive, il suo rapporto con la scienza. Cod. 335H

Programmazione del RODNAY

CEDOLA DI COMMISSIONE LIBRARIA

Da inviare a JCE - Via dei Lavoratori, 124 - 20092 Cinisello Balsamo (MI)

						T	T		T	T	Т	Γ	T		T	T	T	T	Т	T	T	T	T	T	T	7
ndiriz	:0					_			_	•		_		-	-			-		_			_		_	
						П								T	T		T		T	T			T	7		
Cap.		Citt	à																					_		Prov
													I							T			I	T	7	
Codica	Fiscale (Inc	lispen	sabil	e pe	r la	azie	ende	1)	-		•	-	_	_	_					_	_	7.0		_	_	-

Inviatemi i seguenti libri:

🗆 Pagherò al postino il prezzo indicato nella vostra offerta speciale + L. 2.000 per contributo fisso spese di spedizione

Banca

Codice Libro	Quantità								

□ Non Abbonato □ Abbonato sconto 20% □ Selezione RTV □ Millecanali □ Sperimentare □ Il Cinescopio □ Electronics Games

Data

Alla scoperta dello ZX Spectrum

Dopo aver visto cosa sono i calcolatori, il lettore potrà già capire le differenze tra lo SPECTRUM e gli altri computer.

Cod. 3378

L. 22.000 (Abb. L. 17.600)

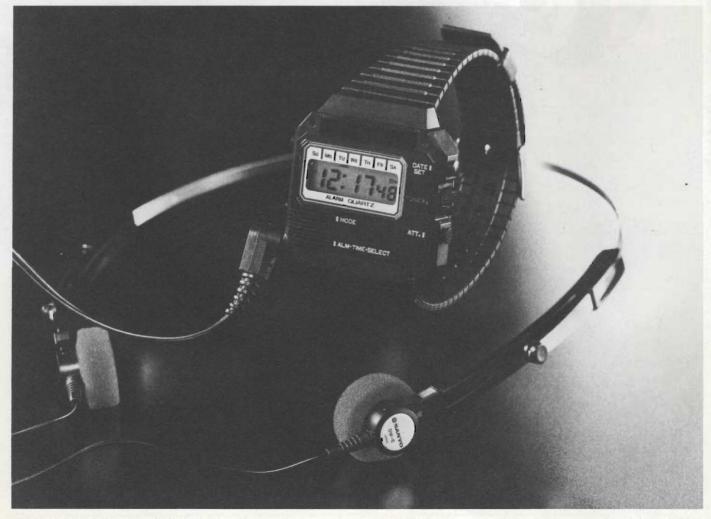
Proibito: come avere cura di un computer

Suggerimenti per proteggere le informazioni e assicurare il buon funzionamento di un calcolatore per mesi e anche per anni. Cod. 333D L. 14.000 (Abb. L. 11.200)

La soppressione dei transitori di tensione

Il libro si propone di dare soluzione al problema del fenomeno dei transitori di tensione formando valide soluzioni circuitali. Cod. 611H L. 12.000 (Abb. L. 9.600)

TECNY-OHM


Viale Matteotti, 66 20092 Cinisello Balsamo Milano - ITALIA Tel.: 02/6123351 (5 linee) Telex: GBCMIL 330028 PIEMONTE EMILIA MARCHE LAZIO

Via D. Alighieri, 26 - 60022 Castelfidardo (AN) - Tel.: 071/78707 Via G. Boldini, 29 - 00125 ROMA - Tel.: 06/6056143

RICEVITORE F.M. COMPLETO SU CHIP

di W.H.A. von Dooremolen, M. Hufschmidt della Philips

Il grande interesse destato dalla presentazione sommaria nel numero di Selezione di Luglio/Agosto, del nuovo circuito integrato TDA 7000, contenente tutte le funzioni richieste per la ricezione di emittenti F.M., ci ha indotto a pubblicare questo articolo nel quale si dànno spiegazioni molto più approfondite riguardanti il funzionamento e le applicazioni di questo nuovo integrato. Le possibilità d'impiego, oltre a quella propria di radioricevitore F.M., sono infatti, molte, e dipendono dalla fantasia del progettista.

L'integrato ricevitore F.M. completo TDA 7000 permette di realizzare ricevitori F.M. di ridotte dimensioni, tali da poter essere inseriti, dentro penne, accendini, orologi da polso ecc..

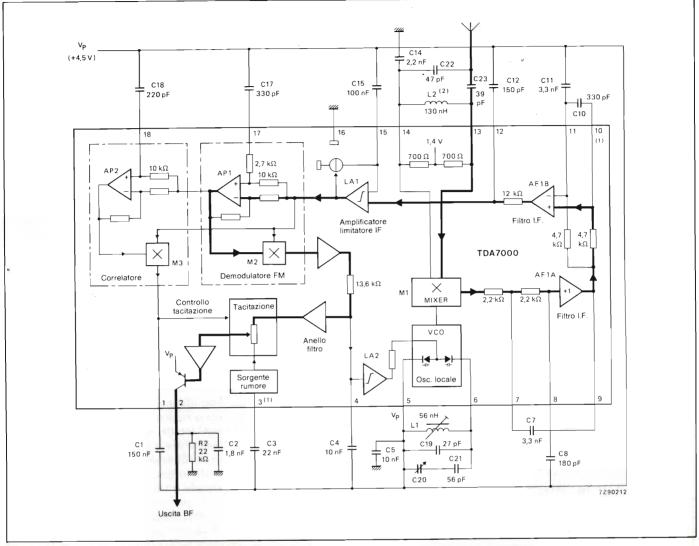


Fig. 1 - Funzioni contenute nel chip del TDA 7000. Questo integrato incorpora tutte le funzioni di un ricevitore F.M. richieste partendo dall'antenna fino all'uscita audio demodulata. Esternamente occorrono soltanto pochi componenti, compreso naturalmente il condensatore variabile di sintonia.

1) Questi terminali non vengono utilizzati nella versione in contenitore S0 (TDA 7010T) AP = filtro passa-tutto. 2) Nel prototipo di laboratorio presentato in un altro articolo in questa rivista, la bobinetta L2 è ricavata dal rame dello stampato. L1 = Toko MC108 N. 514 HNE 150013S13. C20 = Toko N. 2A-15BT-R01.

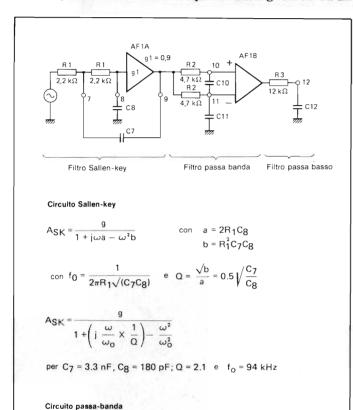
ino a poco tempo fa non era stato possibile realizzare in forma integrata, e cioè su chip, un radioricevitore F.M. completo a causa della presenza di circuiti LC accordati nell'amplificatore r.f., nell'oscillatore, nell'amplificatore della frequenza intermedia e nel demodulatore.

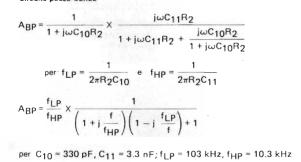
Il sistema più semplice per eliminare le bobine dagli stadi dell'amplificatore della frequenza intermedia e dal demodulatore poteva essere quello di ridurre il valore della frequenza intermedia (i.f.), normalmente impiegato (e cioè 10,7 MHz), ad un valore di frequenza che potesse essere accordato mediante filtri attivi RC i quali, come è noto, possono essere realizzati mediante amplificatori operazionali e resistori, componenti questi facilmente integrabili su un chip di silicio.

Eliminare del tutto il segnale i.f. poteva sembrare la soluzione ideale, in quanto venivano tolti di mezzo automaticamente segnali spurii, come per esempio, quelli in corrispondenza dei quali sulla "scala parlante" è possibile sintonizzarsi sulla medesima emittente (punti di ripetizione) e il segnale della frequenza-immagine. Questo sistema però non

avrebbe consentito al segnale i.f. di potere essere limitato prima di essere demodulato, per cui il rapporto segnale/disturbo sarebbe risultato molto basso, e non si avrebbe avuto inoltre nessuna soppressione dei segnali A.M..

Assegnando alla frequenza intermedia (i.f.) il valore di 70 kHz, questi problemi vengono brillantemente risolti, ed inoltre la frequenza-immagine viene a cadere a circa metà strada tra il segnale desiderato e il centro del canale adiacente.


Questo "segnale immagine i.f." deve essere però soppresso, ed inoltre, come in tutti i radioricevitori F.M. convenzionali, c'è l'esigenza di sopprimere sia il rumore che si sente quando si passa da una stazione all'altra sia quello che si avverte quando ci si sintonizza su un segnale F.M. debole. Devono essere inoltre eliminate sia le risposte spurie che si registrano al disopra e al disotto della frequenza centrale dell'emittente desiderata (side tuning), sia i fenomeni di distorsione di terza armonica (THD) che hanno luogo quando si effettua una sintonizzazione inaccurata.


La *Philips* ha sviluppato un sistema di ricezione F.M. mono che può essere realizzato integralmente sotto forma di circuito integrato. Esso si basa su un *filtro i.f. attivo* accor-

dato a 70 kHz, e un originale circuito di tacitazione tendente a sopprimere i segnali spuri, come per esempio, le risposte laterali (side tunings) dovute ai fianchi della curva a S del demodulatore. Occorre però subito far presente che con un valore così basso della i.f., i segnali ricevuti, aventi la massima percentuale di modulazione (e cioè quelli che presentano una variazione (Δ f) di \pm 75 kHz della frequenza centrale i.f.), avrebbero subito una forte distorsione. Si è deciso quindi di ridurre questa variazione di frequenza del segnale i.f. ad un

valore di Δ f pari a \pm 15 kHz, e questo è stato reso possibile in quanto si è provveduto a controllare la frequenza dell'oscillatore locale mediante un anello FLL (FLL = Frequency Locked Loop), con il risulato che l'azione combinata del circuito di tacitazione e di questo anello FLL ha soppresso anche la frequenza immagine.

Questo nuovo integrato, ricevitore F.M., ha per sigla *TDA* 7000 e, come già detto, integra tutte le funzioni che in un normale radioricevitore F.M. mono, vanno dall'ingresso del

Circuito passa-basso $A_{LP} = \frac{1}{1 + j\omega C_{12}R_{3}}$ $per f_{LP} = \frac{1}{2\pi C_{12}R_{3}}$ $A_{LP} = \frac{1}{1 + j\frac{\omega}{\omega}}$

per $C_{12} = 150 \text{ pF}$; $f_{1p} = 88.4 \text{ kHz}$

Fig. 2 - Filtro attivo per l'accordo del segnale della frequenza intermedia nel TDA 7000. Sono indicate anche le formule utilizzate per il dimensionamento del circulto rispettivamente Sallen-Key, del circulto passabanda e del circulto passa-basso.

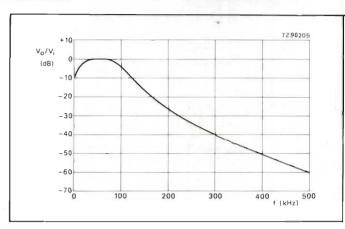


Fig. 3 - Curva di risposta del filtro attivo i.f..

segnale di antenna fino all'uscita b.f. audio. I componenti esterni all'integrato sono ridotti soltanto al circuito LC accordabile dell'oscillatore locale, a pochi ed economici condensatori ceramici a piastrina e ad un resistore.

Il TDA 7000 riduce quindi drasticamente i costi di assiemaggio e di allineamento in quanto soltanto il circuito dell'oscillatore locale richiede una messa a punto in sede di costruzione, e questo solo per fissare i limiti della banda di frequenze sulla quale si desidera sintonizzarsi. Ne consegue che il radioricevitore F.M. completo potrà assumere dimensioni così ridotte da poter essere inserito per esempio, in un

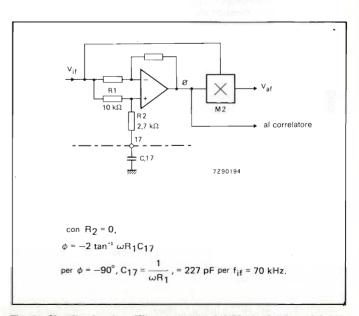


Fig. 4 - Circuito sfasatore (filtro passa-tutto) richiesto dal demodulatore F.M.. Il resistore R2 è stato aggiunto per migliorare le prestazioni del filtro passa-tutto nel confronti della forma d'onda del segnale I.f. limitato in ampiezza. Siccome ciò influisce sull'angolo di fase, occorrerà aumentare nella misura del 50% anche il valore di C17, e cloè, pe fii = 70 kHz, C17 sarà 330 pF.

calcolatore tascabile, in un accendino, in un anello portachiavi, e addirittura in un orologio da polso. La cosa più interessante è che, a causa di queste ridotte dimensioni, il TDA 7000 potrà essere utilizzato anche come ricevitore in apparecchiature quali, per esempio, telefoni senza fili, radioricevitori CB, modelli radiocomandati, come canale audio di un televisore, e altri sistemi di ricezione F.M..

L'introduzione del TDA 7000 porta effettivamente un significativo miglioramento di prestazioni in tutti i tipi di radio-ricevitori F.M.. Per esempio, le ridotte dimensioni, la mancanza di bobine i.f., la facilità di montaggio, il basso consumo non sono le sole caratteristiche a cui guarda chi intende realizzare un radioricevitore portatile. Al progettista di questi ricevitori interesseranno infatti anche le altre prerogative di questo integrato, e cioè il sistema di tacitazione e l'anello di controllo FLL che permette la sintonizzazione sulle varie stazioni utilizzando una manopola di ridotto diametro. Nei radioricevitori portatili di classe più elevata e nelle radiosveglia, molte volte è richiesto il sitema di sintonizzazione effettuato mediante diodi a capacità variabile, come pure la possibilità di pre-sintonizzare alcune stazioni.

Tutte queste esigenze possono essere facilmente soddisfatte dall'integrato TDA 7000 in quanto nel "cammino del segnale r.f." non esistono circuiti accordati; come già detto, soltanto l'oscillatore locale richiede di essere accordato, per cui vengono automaticamente eliminati problemi di "tracking" e di distorsione.

Il TDA 7000 è disponibile sia in contenitore plastico DIL a 18 terminali sia in contenitore SO a 16 terminali, nel qual caso viene chiamato TDA 7010T.

Gli sviluppi futuri di questo integrato prevedono la riduzione dell'attuale valore della tensione di alimentazione (4,5 V) e l'introduzione di versioni F.M. stereo e A.M./F.M..

Descrizione del circuito

Come è indicato in figura 1, il TDA 7000 incorpora un oscillatore locale, uno stadio mixer, un filtro attivo i.f. a due stadi seguito da un amplificatore/limitatore del segnale i.f., un demodulatore F.M. in quadratura, ed infine un circuito di tacitazione audio controllato da un correlatore della forma d'onda della i.f.. Il guadagno di conversione del mixer unitamente all'elevato guadagno dell'amplificatore/limitatore i.f. provvedono ad effettuare l'azione c.a.v. (controllo automatico del volume), ed una efficace soppressione dei segnali A.M..

Il segnale r.f. richiesto all'ingresso del TDA 7000 per avere una limitazione di -3 dB, è 1,5 μV . In un radioricevitore portatile convenzionale, una limitazione del segnale i.f. realizzata con un segnale r.f. d'ingresso così basso produrrebbe sicuramente fenomeni di instabilità, in quanto verrebbero irradiate verso l'antenna, le armoniche di ordine più elevato prodotte in seguito alla limitazione (tosatura) del segnale i.f.. Grazie al basso valore del segnale i.f. del TDA 7000, questi fenomeni di irradiazione sono del tutto trascurabili.

Come già detto, per impedire fenomeni di distorsione che si sarebbero registrati a causa del basso valore della frequenza del segnale a frequenza intermedia i.f. usato nel TDA 7000, si è dovuto ridurre a \pm 15 kHz la massima deviazione di frequenza (Δf) che si ha in corrispondenza di segnali r.f. aventi la massima percentuale di modulazione. (Ovviamente, il segnale r.f. in condizioni di massima modulazione avrà sempre un $\Delta f = \pm$ 75 kHz). Ciò si è potuto fare come già accennato, introducendo un anello FLL (Frequency Locked Loop) il quale fa sì che l'uscita del demodulatore F.M. sposti la frequenza dell'oscillatore locale in maniera inversamente

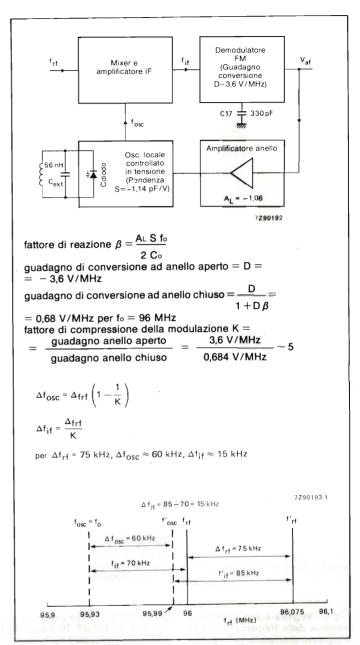


Fig. 5 - Sistema adottato per comprimere la variazione di frequenza (Δ f) dei segnale a frequenza intermedia. Il sistema è basato su un anello di controllo di frequenza FLL. Co = Coxt + Cdispersa + Cdiodo con anello aperto = 49 pF con fo = 96 MHz

proporzionale alla deviazione (Δ f) del segnale i.f. prodotta dal segnale modulante del trasmettitore.

Filtro attivo per il segnale i.f.

La prima sezione del filtro del segnale a frequenza intermedia i.f. (AF1A) è costituita da un circuito Sallen-Key passa-basso di secondo ordine, la cui frequenza di taglio (cut-off) viene fissata internamente dai resistori da 2,2 k Ω ed esternamente dai condensatori C7 e C8. La seconda sezione del filtro i.f. (AF1B) è formata, a sua volta, da un filtro bassa-banda di primo ordine il cui limite *inferiore* è determinato internamente da un resistore da 4,7 k Ω ed esternamente dal condensatore C11. Il limite *superiore* del passa-banda è determinato da un resistore interno da 4,7 k Ω e dal condensatore esterno C10.

La sezione finale del filtro i.f. è formata da una rete passa-

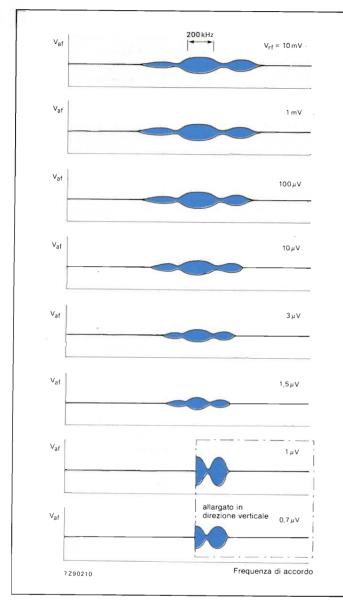


Fig. 6 - Segnale audio di uscita di un tipico radioricevitore portatile in funzione della frequenza di sintonia per differenti livelli del segnale d'ingresso di antenna. La frequenza e l'amplezza del segnale modulante sono, in questo caso, fisse.

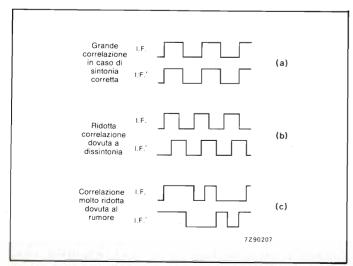


Fig. 7 - Meccanismo di funzionamento del sistema di tacitazione a correlazione.

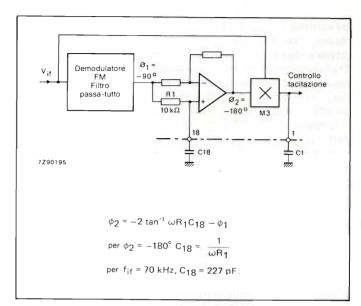


Fig. 8 - Struttura di principio del correlatore incorporato nel TDA 7000.

basso di primo ordine comprendente un resistore interno da $12 \,\mathrm{k}\,\Omega$ e il condensatore esterno C12. Ne consegue che il filtro completo del segnale i.f. sarà formato da una sezione passabasso di quarto ordine e da una sezione passa-alto di primo ordine. Sotto alla figura 2 sono riportate le equazioni che hanno permesso la progettazione di questo filtro.

La curva di risposta del filtro è riportata nella figura 3.

Il demodulatore F.M.

Il demodulatore F.M. in quadratura M2 provvede a trasformare le variazioni di frequenza del segnale i.f., prodotte dalla modulazione del segnale audio al trasmettitore, in una tensione a frequenza audio. Possiede un guadagno di conversione pari a $-3,6\,\mathrm{V/MHz}$, e richiede da parte dell'amplificatore/limitatore i.f., segnali di ingresso in quadratura di fase. Come indicato in figura 4, gli ingressi in quadratura di fase (e cioè i due segnali d'ingresso sfasati di 90°) sono forniti da un filtro passa-tutto attivo, avente un guadagno pressochè pari all'unità in corrispondenza di tutte le frequenze, e capace di effettuare uno spostamento di fase variabile, la cui entità dipende dal valore del condensatore esterno C17.

Compressione della deviazione del segnale i.f. prodotta dal circuito FLL

Abbiamo già detto che, adottando come segnale a frequenza intermedia i.f. il valore di 70 kHz, e mantendo nello stesso tempo per questo segnale, la variazione standard $\Delta\,f=\pm\,75$ kHz (questo valore di deviazione si ha quando il segnale F.M. ricevuto possiede la massima modulazione), il segnale audio rivelato avrebbe avuto una forte distorsione armonica. Per evitare questo grave inconveniente, il TDA 7000 ricorre ad un anello di controllo di frequenza FLL che provvede a comprimere la deviazione $\Delta\,f$ del segnale a frequenza intermedia i.f..

Per far ciò, il sistema FLL prende il segnale audio ricavato all'uscita del demodulatore F.M. e lo usa per spostare la frequenza dell'oscillatore locale; questo spostamento però avviene in senso inverso alla deviazione Δ f del segnale i.f..

Il principio di funzionamento del sistema è illustrato in figura 5 la quale indica appunto che una deviazione del segnale i.f. di \pm 75 kHz, può essere ridotta (compressa) ad

una deviazione di circa \pm 15 kHz. La distorsione di terza armonica (THD) risulterà inoltre limitata allo 0,7% in corrispondenza di una deviazione di frequenza Δ f = \pm 22,5 kHz, e al 2,3% quando Δ f = \pm 75 kHz.

Sistema di tacitazione a correlazione con anello FLL aperto

La differenza caratteristica tra una ricezione di segnali F.M. e ricezione di segnali A.M. è, com'è noto, questa: ciascuna emittente F.M. può essere ricevuta in almeno 3 punti di sintonizzazione. La figura 6 riporta lo spettro di frequenza dei segnali di uscita dal demodulatore di un radioricevitore F.M. portatile tipico che sta ricevendo una portante r.f. modulata in frequenza da un segnale audio di frequenza e ampiezza costante. Qui vediamo che, oltre al segnale audio (al centro nella figura) ottenuto con un punto di sintonia corretto, sono presenti ai lati anche altri segnali prodotti dai -fianchi dalla "curva a S" del demodulatore. Siccome i fianchi della curva a S hanno un andamento non lineare, anche queste risposte audio laterali presenteranno una crescente distorsione armonica. Dalla figura 6 risulta inoltre che la frequenza e l'intensità di queste risposte laterali variano al variare dell'intensità del segnale ricevuto e che inoltre sono separate dal punto di sintonia corretto da una strozzatura (ampiezza minima). In pratica però queste strozzature non risultano ben definite; ciò per il fatto che la frequenza del segnale di modulazione e relativo indice di modulazione non sono costanti, ed inoltre anche per il fatto che le risposte laterali dei canali adiacenti tendono spesso a sovrapporsi.

Per sopprimere queste risposte laterali (tacitazione), i radioricevitori F.M. di classe incorporano i cosidetti "sistemi squelch", nei quali la tacitazione può essere realizzata in funzione della intensità del segnale oppure in funzione della deviazione della sintonia. Inoltre, per facilitare la sintonizzazione sull'emittente che si vuole ricevere, impiegano anche uno strumento ad indice.

Nonostante il TDA 7000 sia stato studiato principalmente per realizzare radioricevitori economici portatili e radiosveglie, esso è stato munito di un sistema di tacitazione a correlazione veramente nuovo e efficace, capace di sopprimere sia il rumore che si avverte quando si passa da una stazione ad un'altra sia le risposte spurie dovute ai fianchi della curva a S del demodulatore.

Il sistema di tacitazione è controllato da un circuito che determina la correlazione fra la forma d'onda del segnale i.f. e una versione invertita di esso, ritardata di fase in una misura pari a metà del perido della frequenza i.f. nominale (180°). Un generatore di rumore che lavora in combinazione con il sistema di tacitazione è in grado di fornire un'indicazione udibile che segnala la incorretta sintonizzazione.

La figura 7 illustra il modo di funzionamento di questo sistema di tacitazione. Il segnale IF' è stato ottenuto ritardando il segnale i.f. nella misura di metà del periodo della frequenza nominale del segnale i.f., e poi invertendolo. In caso di sintonizzazione corretta come indicato in figura 7(a), la forma d'onda dei due segnali è identica, e di conseguenza, la correlazione è massima. In queste condizioni, il segnale audio non viene tacitato. Nel caso di sintonia non corretta, come indicato in figura 7(b), il segnale IF' risulta spostato di fase rispetto al segnale if.. La correlazione fra le due forme d'onda risulta in questo caso ridotta, e di conseguenza l'uscita audio risulterà tacitata. La figura 7(c) indica che, a causa del basso fattore di merito Q del filtro i.f., il rumore tende a produrre una considerevole fluttuazione del periodo della forma d'onda del segnale i.f. Anche in questo caso, la corre-

lazione tra le due forme d'onda è molto scarsa, e di conseguenza, anche in questo caso l'audio risulta tacitato.

Da quanto sopra si conclude che il sistema di tacitazione a correlazione tende a sopprimere sia il rumore sia le risposte laterali dovute alla dissintonia prodotta dai fianchi della curva a S del demodulatore. Siccome in questo caso la soglia di entrata in funzione della tacitazione è molto più bassa di quella che si ha nella maggior parte dei sistemi di tacitazio-

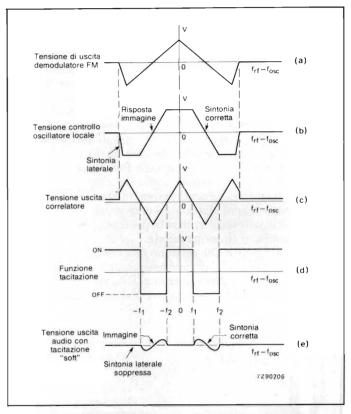


Fig. 9 - Meccanismo di funzionamento del sistema di tacitazione a correlazione con anello FLL aperto.

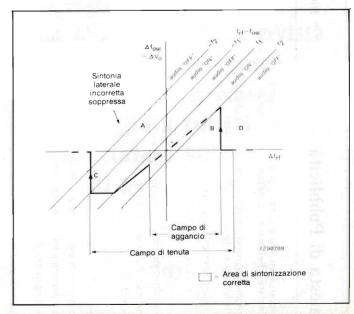
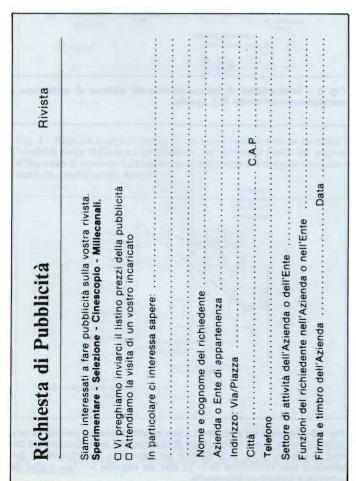



Fig. 10 - Risposta del circuito FLL con anello chiuso. La pendenza della retta che si ha in corrispondenza di una corretta sintonizzazione è tale che una deviazione di \pm 75 kHz del segnale a radiofrequenza (fr/), produrrà una deviazione di \pm 15 kHz del segnale fr/ - fosc, e cioè del segnale a frequenza intermedia.

ne attualmente impiegati, il sistema descritto sarà ideale per i radioricevitori portatili i quali, molto spesso, devono poter ricevere segnali con un livello di poco superiore al rumore presente all'ingresso.

Come si può vedere dalla figura 1, il circuito di tacitazione a correlazione introdotto nel TDA 7000 è formato da un filtro passa-tutto a AP2, collegato in serie con il filtro passa-tutto AP1 del demodulatore F.M.. Il filtro viene regolato mediante un condensatore esterno in maniera da effettuare una rotazione di fase complessiva di 180º del segnale. Il segnale di uscita da AP2 viene applicato allo stadio mescolatore M3 il quale si incarica di determinare la correlazione esistente tra il segnale i.f. limitato e non ritardato applicato ad uno dei suoi ingressi, e la versione invertita e ritardata nel medesimo applicata all'altro ingresso. L'uscita del mixer M3 provvede a controllare un circuito di tacitazione che a sua volta fornisce il segnale audio demodulato all'uscita in caso di correlazione elevata, oppure in caso di scarsa correlazione, fornisce a questa stessa uscita un segnale proveniente da una sorgente di rumore allo scopo di dare un'indicazione udibile di incorretta sintonizzazione. Per impedire la produzione di fastidiosi transitori audio, la commutazione del circuito di tacitazione è progressiva (tacitazione dolce). L'uscita proveniente dal mixer M3 è disponibile all'esterno sul terminale 1 e può essere utilizzata per comandare un indicatore di imperfetta sintonizzazione.

La figura 9 indica che esistono due regioni nelle quali il segnale audio demodulato può essere applicato all'uscita in seguito a mancanza di tacitazione. Una regione è centrata nel punto di sintonia corretto (fL); l'altra, è centrata sulla

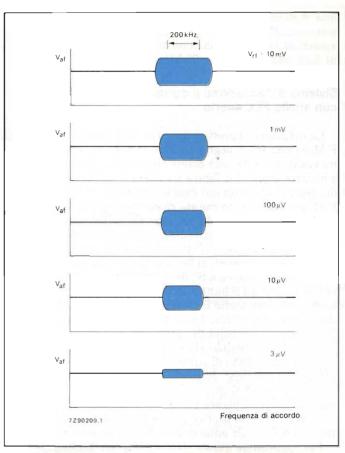


Fig. 11 - Segnale audio di uscita del TDA 7000 in funzione della frequenza di sintonia per differenti livelli del segnale d'ingresso in antenna. In questo caso, l'ampiezza e la frequenza del segnale modulante sono fisso

frequenza immagine (– fl.). Si conclude quindi che se l'anello FLL risulta aperto non si ha soppressione della risposta all'immagine da parte del sistema di tacitazione descritto. Quando invece l'anello FLL risulta chiuso, la costante di tempo del sistema di tacitazione, determinata dal condensatore esterno C1, fa sì che la risposta all'immagine non possa essere trasferita all'uscita audio. Questo meccanismo verrà descritto nel paragrafo successivo.

Sistema di tacitazione a correlazione con anello FLL chiuso

La risposta del circuito FLL ad anello chiuso è riportata in figura 10, dove il punto di origine corrisponde al valore nominale della frequenza intermedia i.f. ($f_{\rm rf} - f_{\rm osc} = f_{\rm L}$). In caso di corretta sintonizzazione, il sistema di tacitazione è inattivo, e il segnale audio può essere trasferito all'uscita. Risposte spurie dovute ai fianchi della curva a S del demodulatore, e che hanno luogo al di fuori della banda i.f. da $-f_2$ a f_2 , vengono soppresse per il fatto che la tacitazione è attiva. Rapidi transitori nel segnale audio, dovuti alla chiusura dell'anello (A e B), e ad una sua mancata chiusura (C e D) vengono soppressi in due maniere.

I transitori B e D dovuti rispettivamente alla chiusura e alla mancata chiusura dell'anello, si verificano quando il segnale i.f. è maggiore di f₂, e vengono quindi soppressi per il fatto che la tacitazione è attiva. La situazione è diversa durante il transitorio C (mancanza di chiusura dell'anello), per il fatto che la tacitazione è attiva soltanto per l'ultima parte del transitorio. A sopprimere completamente questo

Tabella 1 - Dati caratteristici essenz	ziali del TDA	7000
Tensione di alimentazione tipica	Vp	4,5 V
Corrente di alimentazione tipica	lp.	8 mA
Banda dei segnali r.f. ricevibili	fa	da 1,5 a 110MHz
Sensibilità in antenna per una limitazione di -3 dB con Z _s $=75~\Omega$ (tacitazione disabilitata) Segnale massimo applicabile all'in-	V _{rt} – 3 dB	1,5 <i>μ</i> V
gresso per una distorsione $<$ 10% Δf = \pm 75 kHz e Z _s = 75 Ω Uscita audio (valore efficace con RL=	Vrt	200 mV
22 k Ω , Δ f = \pm 22,5 kHz	Vo	75 mV

transitorio provvede il condensatore C1 di figura 1, il quale mantiene positiva la linea di controllo della tacitazione (tacitazione attiva) nel breve intervallo durante il quale il segnale i.f. passa da $-f_1$ a $-f_2$. La stessa cosa vale per il transitorio A (anello chiuso) durante il breve intervallo quando il segnale i.f. passa da $-f_2$ a $-f_1$. Viene soppressa anche la risposta all'immagine in quanto capita a metà strada tra $-f_1$ e $-f_2$.

La figura 11 indica il segnale di uscita audio (Veff) del TDA 7000 in funzione della frequenza di sintonia per differenti livelli del segnale r.f. applicato in antenna. Se confrontiamo questo segnale audio con quello analogo presente in un radioricevitore portatile convenzionale (figura 6), constatiamo facilmente che il sistema di tacitazione introdotto nel TDA 7000 ha permesso di ottenere queste tre importanti migliorie:

- sono scomparse le risposte laterali prodotte dai fianchi della curva a S del demodulatore. Ciò è dovuto all'azione del sistema di tacitazione a correlazione (tacitazione dolce) il quale riunisce la funzione di un sistema di tacitazione dipendente dalla dissintonia, con quella di un sistema di tacitazione dipendente invece dall'intensità del segnale ricevuto.
- La banda delle frequenze entro la quale può avvenire la sintonizzazione corretta è ampia anche in presenza di deboli segnali in antenna. Ciò è dovuto all'azione del controllo automatico di frequenza (CAF) prodotta dall'anello FLL che tende a ridurre ampie variazioni di frequenza dei segnali d'ingresso in antenna (equivalenti a una dissintonia) ad una insignificante variazione del segnale i.f.. Ne consegue che quando il radioricevitore risulta leggermente fuori sintonia non si avverte alcuna distorsione nell'uscita audio.
- Nonostante il sistema di tacitazione dolce rimanga operativo con segnali di antenna di basso livello non si registra anche in queste condizioni, alcuna degradazione del segnale audio. Ciò è dovuto al guadagno elevato dell'amplificatore/limitatore i.f. che riesce ad effettuare una limitazione di 3 dB del segnale i.f. anche quando il segnale d'ingresso in antenna ha un livello di 1,5 μV. Indubbiamente però, in presenza di segnali in antenna di basso livello, l'azione della tacitazione dolce tenderà a ridurre il livello di uscita audio.

Bibliografia

- (1) Redazione Miniricevitori FM con il TDA 7000. Selezione di Tecniche Elettroniche N. 7/8 1983 pag. 39.
- (2) Karrow W. e Siewert I Integrated circuits for hi-fi radios and tuners. E.C.A. Philips (disponibile a richiesta).

E' IN EDICOLA IL N. 1 DI

La più interessante rivista di piccoli computer, software e hardware.

In omaggio a tutti i lettori il catalogo SOFTBANK di ben 96 pagine

TASTIERA ELETTRONICA CON DISPOSITIVO DI PRIORITA'

di Michael Schuetz

Viene descritta una tastiera digitale con blocco e sblocco reciproco delle funzioni dei tasti, in grado di sostituire le tastiere meccaniche.

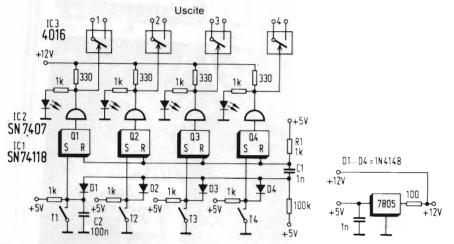


Fig. 1 - Schema elettrico della tastiera elettronica. Con questo circuito è possibile sostituire le tastiere meccaniche.

n molti apparecchi elettronici è necessaria una tastiera che possa svolgere le necessarie funzioni di commutazione. Per non incorrere negli inconvenienti caratteristici dei gruppi ad azionamento meccanico (lunga corsa dei tasti, forti vibrazioni anche in componenti di piccole dimensioni, ed inoltre, in certi casi, montaggio e cablaggio molto laboriosi) è stata progettata questa tastiera elettronica. Il dispositivo è azionato mediante pulsanti "Digitast", ed ha la possibilità di essere corredato da dispositivi di sblocco reciproco dei tasti, ottenuti con sistema elettronico. Ciascun tasto potrà inoltre essere predisposto per l'azionamento prioritario e verrà di conseguenza attivato subito dopo l'accensione dell'apparecchio.

Un registro memorizza le informazioni

In figura 1 è illustrato lo schema di un gruppo a quattro tasti. Ciascun tasto pilota un registro (Q1...Q4) di IC1 (SN 74118), che trattiene l'informazione anche dopo che il tasto è stato rilasciato. Le uscite del registro sono collegate a stadi pilota (IC2, SN 7407), che servono a pilotare i LED indicatori dello stato di azionamento di un tasto, nonchè ad elevare il livello TTL al valore di 12 V. Di conseguenza, sarà possi-

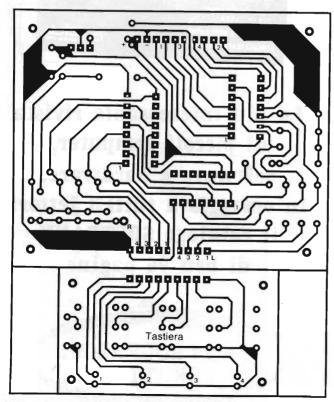


Fig. 2 - Circuito stampato per la tastiera elettronica. La parte inferiore potrà essere staccata e montata sul pannello anteriore di un apparecchio.

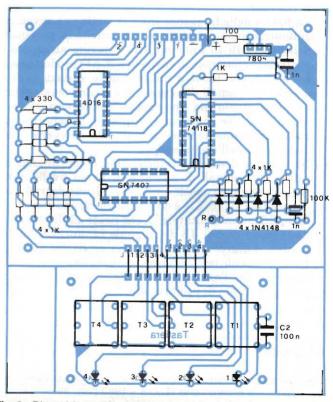


Fig. 3 - Disposizione dei componenti. Montando il gruppo di comando separato dai tasti, il collegamento tra i due circuiti stampati potrà essere eseguito mediante una piattina multifilare.

bile pilotare gli "interruttori analogici" contenuti nel circuito integrato IC3 (4016) con i quali potrà essere commutato, per esempio, un segnale a bassa frequenza. Per scopi di commutazione o di pilotaggio, sarà possibile applicare agli ingressi di attivazione degli interruttori analogici il segnale a livello TTL (uscita del registro) oppure un livello di 12 V (CMOS).

Il disinnesto vicendevole dei tasti viene ottenuto nel modo seguente: i quattro ingressi di "set" e l'ingresso comune di "reset" sono mantenuti al livello logico "1" mediante resistori di "pull-up" (collegamento al positivo). Il "set" di uno dei registri viene ottenuto portando al livello logico "0" il corrispondente ingresso. Il "reset" avverrà contemporaneamente per tutti i registri, in quanto vengono portati a livello logico "0" tutti gli ingressi di reset. Ad ogni pressione di un tasto, verranno per prima cosa resettati tutti i registri, perchè viene generato un impulso negativo tramite R1, C1, D1...D4 ed il contatto del corrispondente tasto; questo impulso negativo perviene agli ingressi R di Q1...Q4. Poichè la durata dell'impulso è dell'ordine di alcuni microsecondi, potrà essere premuto con la massima sicurezza un nuovo tasto, dopo il reset del registro; verrà così settato il registro corrispondente al nuovo tasto premuto.

Circuito di priorità

Il tasto che dovrà risultare attivato per primo al momento dell'accensione dell'apparecchio, verrà predisposto collegando un condensatore (C2) in parallelo ai contatti del tasto. Al momento in cui verrà applicata la tensione di alimentazione, dovrà dapprima caricarsi C2 e perciò, al primo istante, l'ingresso di "set" sarà a livello "0" ed il corrispondente registro verrà settato.

In figura 2 sono disegnate le piste del circuito stampato ed in figura 3 è illustrata la disposizione dei componenti per un modulo a quattro tasti. I tasti ed i LED verranno montati su un circuito stampato separato, che potrà essere facilmente disposto sul pannello frontale di un apparecchio. I due circuiti stampati verranno collegati tra loro mediante una piattina multifilare. Sarà inoltre possibile collegare in cascata parecchi di questi moduli. I punti R sul circuito stampato principale dovranno essere collegati tutti assieme ed in tal modo rimarrà attiva la funzione di disinnesto reciproco. C2, che serve a predisporre il tasto prioritario, verrà saldato sul lato delle piste di rame, in parallelo ai contatti del tasto medesimo.

TEMPORIZZATORE-PROGRAMMATORE SENZA CONTATTI

di Neumayr/Scho

Questo temporizzatore programmabile, nel quale viene impiegato il circuito integrato UAA 3000, permette la commutazione di carichi a tensione di rete ad intervalli di 1...15 minuti oppure di 1...15 ore. In molte applicazioni, questo apparecchio costituisce un'alternativa valida ed economica ai temporizzatori-programmatori elettromeccanici.

l circuito integrato temporizzatore per tempi lunghi UAA 3000, collegato in modo da pilotare un triac, può essere impiegato per molte funzioni nelle quali erano sinora usati temporizzatori elettromeccanici: impianti di illuminazione scale o di illuminazione di sicurezza, controlli di temperatura e di luminosità. Questo temporizzatore può fornire anche una c.c. da 8 mA per pilotare piccoli carichi, con l'aiuto di transistori, relè reed, eccetera.

Alimentazione dalla rete

Il temporizzatore è integrato in un contenitore DIL a 14 piedini. La figura I mostra lo schema a blocchi del circuito integrato. La tensione di alimentazione è direttamente prelevata dalla rete, tramite un resistore in serie al piedino 10. Il secondo polo della rete costitui-

sce il terminale positivo di riferimento per tutte le tensioni e deve essere collegato al piedino 9. Tra i piedini 9 ed 11 è collegato un diodo zener interno che limita la tensione a 5 V;un condensatore elettrolitico è collegato esternamente per filtrare questa tensione.

Nel normale funzionamento con alimentazione dalla rete, il primo divisore integrato nel circuito riceve, tramite un filtro, una tensione ad onda rettangolare a frequenza di 50 Hz; questa frequenza viene successivamente divisa per otto. Un'ulteriore divisione per 375 avverrà quando il piedino 7 sarà collegato al piedino 9. Se il piedino 7 non è collegato a nessun punto, avviene una divisione per 22.500. Ciò vuol dire che nel primo caso il contatore riceverà un impulso al minuto e nel secondo un impulso all'ora.

Mediante i piedini 2...6 sarà possibile codificare in quindici gradini, secondo

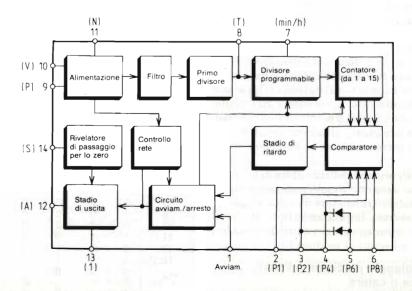


Fig. 1 - Schema a blocchi del temporizzatore per tempi lunghi UAA 3000. Questo circuito integrato viene alimentato direttamente dalla rete, tramite un resistore in serie.

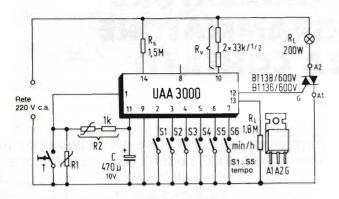


Fig. 2 - Schema completo di un temporizzatore, che può essere regolato per tempi fino a 15 ore ed è adatto a pilotare un carico fino a 200 W. Il temporizzatore potrà essere avviato mediante il pulsante T, od anche mediante i resistori variabili R1 ed R2, che produrranno un livello di tensione superiore alla soglia di commutazione mediante variazione del rapporto del partitore di tensione.

Fig. 4 - Disposizione dei componenti sul circuito stampato. Gli interruttori S1...S6 potranno consistere, a scelta, in semplici ponticelli di filo, oppure in una serie di interruttori DIL.

un codice binario, il successivo comparatore. Il collegamento di uno dei piedini a massa (piedino 9) significa un livello logico "1", mentre un ingresso aperto equivale al livello logico "0". Non appena appare alle uscite del contatore un numero binario identico a quello codificato all'ingresso del comparatore, verrà inviato, tramite uno stadio ritardatore, un segnale allo stadio di avviamento/arresto. Quest'ultimo, a sua volta, comanda l'interruzione del carico utilizzatore. Con i cinque interruttori esterni è possibile predisporre i tempi elencati in tabella 1.

In caso di mancanza della tensione di rete, il contenuto del contatore rimarrà intatto per un massimo di 10 secondi e potrà essere recuperato nel caso di ritorno della tensione entro questo intervallo. Una corrente proporzionale alla tensione perviene, tramite il piedino 14, al rivelatore di tensione zero, che produce impulsi che sono simmetrici rispetto ai punti di passaggio per lo zero della tensione di rete. La durata degli impulsi dipende dal valore della corrente all'ingresso (che a sua volta dipende dal resistore Rs). Collegando a massa il piedino 14, sarà possibile prelevare all'uscita (piedino 12) una corrente continua a livello costan-

Gli impulsi del rivelatore di tensione zero vengono amplificati nello stadio d'uscita (transistore d'uscita a collettore aperto). Il guadagno in corrente varia in funzione del valore del resistore Ri collegato al piedino 13.

Pilotaggio mediante pulsanti, luce o calore

L'avviamento del temporizzatore può avvenire in tre maniere diverse:

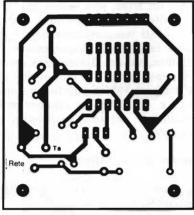
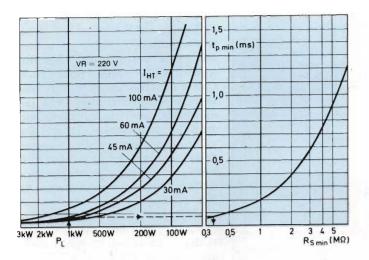


Fig. 3 - Piste di rame del circuito stampato

Tabella 1 - Tempi di attivazione diper dalle posizioni degli interruttori S1S5 ed S6.	ndenti
---	--------

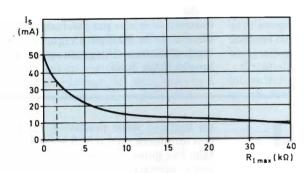
Tempo min/ore	9.8	d	azione ei piedi	ni	20-11
	2 (P1)	3 (P2)	4 (P4)	5 (P6)	6 (P8)
	(F1)	(Г2)	(Г4)	(1-0)	(1-0)
1	1	0	0	0	0
2	0	1	0	0	0
2 3 4	1	1	0	0	0
4	0	0	1	0	0
5	. 1	0	1	0	0
6	0	0	0	1	0
O	0	71	1	0	0
7	1	0	0	1	0
	1	1	1	0	0
8 9	0	0	0	0	1
9	1	0	0	0	1
10	0	1	0	0	1
11	1	1	0	0	
12	0	0		0	
13	1	0	1	0	- 1
14	0	0	0	0	-
	1	0	Ó	1	1
15	1	1	1	Ó	4
			1	0	


con i piedini 1 e 9 stabilmente collegati tra loro. Applicando la tensione di alimentazione, il temporizzatore inizierà a funzionare.

Interruttori DIL

- con il temporizzatore collegato in permanenza alla tensione di alimentazione. Tra i piedini 1 e 9 è inserito un pulsante. Per avviare il temporizzatore sarà necessario premere questo pulsante (contatti in chiusura). Il tempo partirà nel momento in cui il pulsante verrà rilasciato.
- con una tensione esterna di pilotaggio applicata al piedino di avviamento 1. Questa tensione di pilotaggio potrà provenire da un partitore di tensione, da un resistore NTC, da un LDR oppure da un sensore a sfioramento. L'avviamento del temporizzatore avverrà quando la tensione di pilotaggio avrà superato in senso discendente (da 0 V a -5 V) la soglia di commutazione di -2 V (valore tipico) rispetto al piedino 9.

Le due ultime varianti sono illustrate nello schema di figura 2. I resistori Rs, Rv ed Rl sono dimensionati per pilotare un carico di 200 W. Il temporizzatore potrà essere avviato mediante il tasto T oppure mediante la combinazione di resistori R1/R2. La soglia di commutazione potrà in questo caso essere predisposta a seconda dell'applicazione. I dati necessari potranno essere ricavati dalla tabella 2.


Se il circuito sarà destinato esclusivamente ad un comando automatico per luce scale, senza ulteriori funzioni speciali (come interruttore crepuscolare o simili), R1 ed R2 non saranno necessari, essendo sufficiente soltanto il pulsante T. Il tempo potrà essere predisposto mediante S1....S5. Gli interruttori potranno essere rimpiazzati con

1,5
t_{p max}
(ms)
1,0
0,5
0,2
0,3
0,4
0,5
0,8
1,0
2
R_{Smax}(MΩ)
5

Fig. 5 - Dimensionamento di Rs. Il diagramma vale per funzionamento alla tensione di rete di 220 V.

Fig. 7 - Dipendenza tra durata degli impulsi ed Rs; con questa curva potrà essere determinato il valore di Rs per una tensione di rete di 220 V.

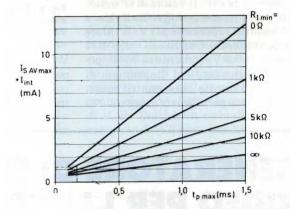


Fig. 6 - Dipendenza tra ampiezza degli impulsi Is e resistenza RI mass.; questa curva serve a determinare graficamente RI.

Fig. 8 - Grafico per la determinazione della resistenza Rv, in serie alla tensione di rete. Allo scopo, sarà necessario ricavare da questo diagramma la corrente massima IR AV (equivalente ad IS AV mass. + lint).

ponticelli fissi sul circuito stampato (fig.3); gli interruttori potranno essere del tipo in configurazione DIL (come indicato nello schema della disposizione dei componenti di figura 4), allo scopo di permettere una facile modifica del tempo predisposto.

Dimensionamento dei componenti esterni

La corrente al piedino 14 (e perciò la durata dell'impulso di accensione del triac, generato dal rivelatore di passaggio per lo zero) viene regolata mediante il resistore Rs. La durata mini-

ma necessaria dell'impulso di accensione dipende dai seguenti fattori:

- Corrente di accensione del triac Int
- Tensione di conduzione del triac V т
- Resistenza RL del carico, oppure potenza dell'utilizzatore
- Tensione di rete VR
- Frequenza di rete f

Il triac BT 138/600, indicato sullo schema, ha le seguenti caratteristiche:

$$\begin{array}{l} \text{IT eff} = 6 \text{ A} \\ \text{V D eff} = 600 \text{ V} \\ \text{IHT} = < 45 \text{ mA} \\ \text{IGT} = 35 \text{ mA} \end{array}$$

Tabella 2 - Predisposizione della soglia di commutazione con R1 ed R2							
Avviamento con	R1	R2					
Deve rimanere inferiore { (ad) un determinato valore di illuminazione } Deve rimanere inferiore { (ad) una determinata } temperatura	LDR Regolabile NTC Regolabile	Regolabile LDR Regolabile NTC					

Il valore di Rs potrà essere calcolato con l'aiuto delle curve di figura 5. In questi diagrammi, sono applicate le tolleranze per la peggiore condizione di funzionamento, con variazioni massime del 10 % per la tensione di rete e la resistenza di carico (oppure la potenza). Inoltre è stata presa in considerazione una caduta di tensione in conduzione ai capi del triac (VT) di 1 V. Per la determinazione del valore di Rs, si parte dalla potenza dell'utilizzatore PL e viene determinato il punto d'incrocio con la relativa curva IHT del triac, nel diagramma di sinistra: questo punto d'incrocio darà la durata minima to min dell'impulso di accensione del triac. La dipendenza tra tp min ed Rs è stabilita dalla curva del diagramma di destra. Il valore rilevato per Rs rappresenta il valore minimo.

Il valore del resistore Rl, collegato al piedino 13, che determina l'ampiezza degli impulsi, verrà calcolato utilizzando il diagramma di figura 6. Il valore di Igt è ricavato dal foglio dati del triac (corrente superiore di accensione). Is dovrà essere maggiore od uguale ad Igt. Il valore resistivo che verrà scelto in pratica dovrà perciò essere inferiore al valore Rl ricavato dal diagramma, in modo da garantire una sicura accensione del triac.

Nel resistore in serie alla rete Rv passa la corrente In Av, che è la somma della corrente assorbita dal circuito integrato (cioè 350 µA) e della media aritmetica della corrente degli impulsi d'uscita Is Av. Questa corrente di uscita degli impulsi dipende dall'ampiezza. dalla durata e dalla frequenza degli impulsi medesimi; quest'ultima è uguale alla frequenza di rete (50 Hz). Per il dimensionamento di Ry è necessario conoscere il valore massimo di Is Av. che viene ottenuto a partire dai valori massimi di Is e tP. Il valore di tP mass. viene ottenuto ponendo per Rs il valore di tolleranza superiore e per V Ril valore minimo tollerato. Con Rs mass. = 1,1. Rse $V_R \min = 0.9 V_R \text{ (tolleranza } 10 \%), po$ trà essere ricavata dal diagramma di figura 7 la durata massima tP mass. dell'impulso, per alimentazione a 220

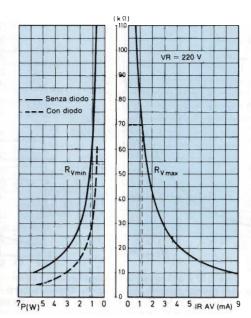


Fig. 9 - Diagrammi per la determinazione di Rv e della sua dissipazione, per funzionamento a 220 V c.a..

V c.a.. Come indicato nella figura 6, la massima corrente dell'impulso Is mass corrisponderà al valore di tolleranza inferiore di Rl.

In figura 8 è rappresentata la curva di dipendenza della corrente In mass. da tp mass., con Ri min. come parametro. In mass. è ricavata sull'asse delle ordinate, a partire dalle costanti Iint ed Isav mass. Con la Inav così ricavata, è ora possibile passare al diagramma di figura 9, dal quale verrà ricavato (sul lato destro) il valore massimo di Rv. Questo valore corrisponde al limite superiore della tolleranza. Il limite inferiore della tolleranza R v min. potrà essere letto sulla parte sinistra del diagramma di figura 9, a seconda della potenza massima di perdita.

Saranno così determinati tutti i valori dei componenti, in modo da poter dimensionare correttamente il circuito, a seconda dell'impiego al quale è destinato. Chiunque desiderasse impiegare il circuito per altre applicazioni (per esempio attivarlo con sensore a sfioramento) oppure prolungare la fase di accensione per un tempo che può arrivare a 469 giorni, potrà consultare le "informazioni tecniche per l'industria" pubblicate dalla Philips e riguardanti il temporizzatore integrato per tempi lunghi UAA 3000.

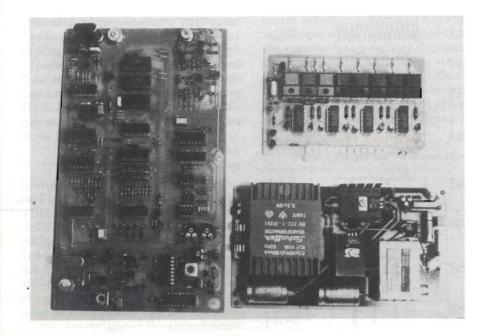
GENERATORE DI SEGNALI VIDEO PER LABORATORIO ED ASSISTENZA TV

di Hubert Reelsen - Parte prima

Per la messa a punto e la riparazione dei videoregistratori e dei televisori è necessario applicare all'apparecchio un segnale di prova secondo la norma CCIR 625. Il generatore presentato in questo articolo produce i segnali per i tre colori fondamentali, un reticolo ed un monoscopio a barre di colore.

uesto apparecchio dovrà essere preferibilmente costruito da chi abbia già una certa esperienza di circuiti digitali e sappia usare l'oscilloscopio ed il frequenzimetro digitale; infatti, il circuito elettrico è abbastanza complicato.

Per la riparazione e la messa a punto dei videoregistratori, è necessario un segnale di prova normalizzato, che è composto da otto gradazioni di luminosità e da sei barre di colore. La luminosità delle barre è pari al 75 % ed il colore è saturo al 100 %. Per la regolazione della purezza del colore nei monitori TV e nei ricevitori televisivi, nonchè


per la regolazione del rapporto fase-/ampiezza nella linea di ritardo, occorre generare i colori fondamentali rosso, verde e blu. Per poter effettuare la regolazione della convergenza, il generatore produce anche un monoscopio a reticolo. In un successivo articolo, dedicato alla costruzione di questo strumento, verrà descritto un generatore multiburst che darà la possibilità di rilevare la risposta in frequenza degli apparecchi televisivi. Il segnale multi-burst potrà occupare l'intero schermo, ma sarà anche possibile inserirlo in un'altra immagine.

L'apparecchio è in grado di erogare

un segnale video positivo o negativo con ampiezza pari a 0...3 Vp-p, regolabile. Per poter impiegare il generatore con i normali apparecchi televisivi, il segnale viene convertito nella frequenza del canale 2. Per particolari misure, è possibile escludere il segnale del colore e può essere anche esclusa la commutazione PAL del segnale V. Poichè i circuiti integrati generatori degli impulsi di sincronismo hanno un prezzo elevato ed è difficile trovarli in commercio, questo apparecchio è stato progettato utilizzando circuiti integrati CMOS di tipo standard. Il segnale di sincronismo così ottenuto, nonchè il segnale-porta per il burst, corrispondono alle norme CCIR 625. A differenza delle versioni più semplici, questo circuito genera anche gli impulsi di equalizzazione. Il progetto è adatto alle esigenze degli elettronici dilettanti tecnicamente evoluti. Lo strumento dovrebbe essere comunque completato con un frequenzimetro digitale, un oscilloscopio con banda passante di almeno 10 MHz ed un puntale di misura 1:10 con capacità di 10 pF.

Tutti i sincronismi derivano da un unico oscillatore

La *figura 1* mostra il generatore degli impulsi di sincronismo. Il suo compito è di generare gli impulsi di sincronismo

verticali ed orizzontali, gli impulsi equalizzatori anteriore e posteriore, il segnale di cancellazione, nonchè l'impulso-porta per il burst. Viene inoltre prodotto un segnale di sincronismo per la generazione del monoscopio a barre di colore e degli impulsi di commutazione PAL. Viene infine generato il reticolo campione, mediante interconnessione logica tra i diversi segnali

Il transistore T1 funziona come oscillatore in fondamentale, stabilizzato da un quarzo di 10 MHz. T2 funziona da

buffer e da pilota CMOS. Grazie all'esclusivo impiego di circuiti integrati CMOS, la potenza assorbita dallo strumento sarà molto bassa e perciò questo generatore è molto adatto anche per altre applicazioni videotecniche, per le quali siano necessari strumenti di basso consumo.

Tutte le forme d'onda vengono ottenute a partire da un raster o sequenza d'impulsi di 1,6 µs. Questo "raster" viene ricavato dividendo per 16, mediante IC1, la frequenza dell'oscillatore a 10 MHz. Gli impulsi da 1,6 µs sono prelevati da Q3/IC1 ed applicati agli ingressi di clock di IC2a e di IC5. IC2 è un contatore decimale doppio, collegato in modo che, una volta raggiunto il valore "40", entrambi i contatori vengano azzerati. R9 e C6, che sono inseriti nel circuito di reset, garantiscono, mediante il loro effetto ritardante, un azzeramento sicuro di entrambi i contatori. I diodi D6 e D7 formano, con R10, una funzione OR che lascierà libero di funzionare il contatore IC5 soltanto quando lo stato di conteggio di IC2 sarà compreso tra 0 e 10. In questo caso saranno cioè a livello "0" le uscite Q0 e Q1 di IC2b. Poichè un ciclo di conteggio completo di IC2 dura $40 \times 1,6 \mu s = 64 \mu s$,

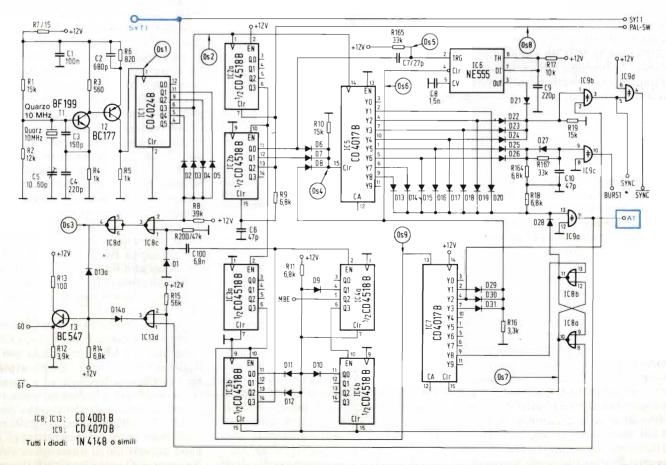


Fig. 1 - Generatore di impulsi, che produce tutti gli impulsi di sincronismo, gli impulsi per il monoscopio a barre di colore e gli impulsi di commutazione PAL. Le parti del circuito retinate in colore serviranno all'ampliamento con il circuito "multiburst".

sarà possibile formare, in base agli stati delle uscite di IC5, i segnali di sincronismo orizzontale.

Quando IC2 ha raggiunto lo stato "40" torna a zero. Il successivo impulso pone a livello "1" Y1 di IC5; un altro impulso successivo porta al medesimo livello Y2; il ciclo prosegue finchè IC2b non avrà raggiunto il valore "10" ed IC5 attiverà il piedino "clear", cioè Y0 passerà a livello "1" e rimarrà in tale stato. I diodi D13...D20 stabiliscono una funzione logica OR tra Y1...Y8. in modo da poter ricavare il segnale di cancellazione orizzontale. D28 fornisce il segnale di cancellazione verticale. La combinazione dei segnali di cancellazione orizzontale e verticale (AT) è inserita poi nel segnale, tramite la porta logica OR esclusivo IC9a collegata come buffer non invertente. Il segnale di cancellazione orizzontale ha la durata di $8 \times 1.6 \mu s = 12.8 \mu s$, mentre il segnale di cancellazione verticale ha la durata di 8 x 160 μ s = 1,28 ms.

I diodi D22...D24 formano una funzione logica OR per Y2...Y4 di IC5. In tale modo viene formato il segnale di sincronismo orizzontale, che dura 3 x $1.6 \,\mu\text{s} = 4.8 \,\mu\text{s}$. Gli impulsi di equalizzazione relativi all'impulso di sincronismo verticale vengono inseriti nel segnale di sincronismo mediante D21. Il segnale miscelato raggiunge la porta logica IC9d, collegata come invertitore, provenendo da IC9b, che è collegato secondo la funzione OR esclusiva con gli impulsi di sincronismo, affinchè durante gli impulsi di sincronismo verticale, della durata di 160 µs, resti garantita anche la sincronizzazione orizzontale. All'uscita di questa porta logica rimane a disposizione del circuito il segnale SYNC.

Dopo che sono trascorsi 0,8 µs dalla fine dell'impulso di sincronismo orizzontale appare, per 2,4 µs, l'impulsoporta per il burst. Non è possibile ricavare il suo ritardo (0,8 µs) dal raster di 1,6 µs e questa funzione viene perciò realizzata mediante un circuito di ritardo. Allo scopo verranno dapprima interconnessi Y5 ed Y6 di IC5, mediante D25 e D26, e successivamente gli impulsi verranno ritardati di 0,8 µs mediante R167 e C10. Solo dopo che è trascorso questo tempo di ritardo, la tensione ai capi di C10 avrà raggiunto il valore di 0,5 x Vb, cioè il livello adatto a far commutare IC9c. Quest'ultima porta logica funziona da buffer non invertente. Al termine del segnale combinato che esce da Y5 ed Y6, il diodo D27 diverrà conduttore, scaricando C10: in $0,1 \mu s$ il livello di tensione scenderà al di sotto della soglia di commutazione

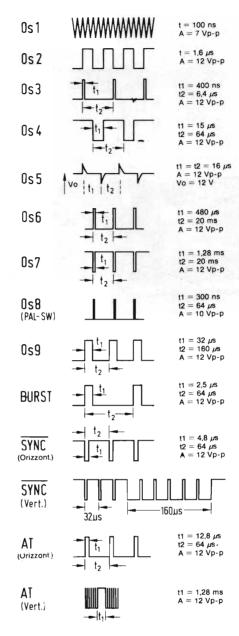


Fig. 2 - Le principali forme d'onda fornite dal generatore di impulsi di sincronismo. I dati segnati accanto agli oscillogrammi saranno utili più tardi, durante la taratura.

di IC9c. L'impulso di reset applicato ad IC2, che appare proprio alla fine di una riga, viene prelevato ed impiegato come impulso di commutazione per il pilotaggio del flip-flop IC12, che a sua volta aziona il commutatore PAL, raffigurato sullo schema di figura 3.

Da Q3 di IC2a vengono prelevati impulsi ad intervalli di 16 μ s, che vengono poi applicati ad IC3a. Gli impulsi che appaiono su Q3 di IC3a hanno un intervallo di 160 μ s. Questi ultimi impulsi vengono inviati, come impulsi di clock, ad IC7 e ad IC3b. I contatori decimali IC3b, IC4a, IC4b sono collegati tra loro mediante una porta AND formata dai diodi D9...D12: in questo modo, dopo che il contatore avrà raggiunto il nu-

mero "125", verranno azzerati i contatori IC3b, IC4a ed IC4b. Il ciclo di conteggio durerà perciò 125 x 160 μ s = 20 ms: questo intervallo corrisponde alla durata di un semiquadro. L'impulso di reset predispone il flip flop, formato dalle due porte NOR IC8a ed IC8b, in modo che il contatore IC7 venga lasciato libero di funzionare dopo la scomparsa del segnale "clear".

Impulsi per il reticolo

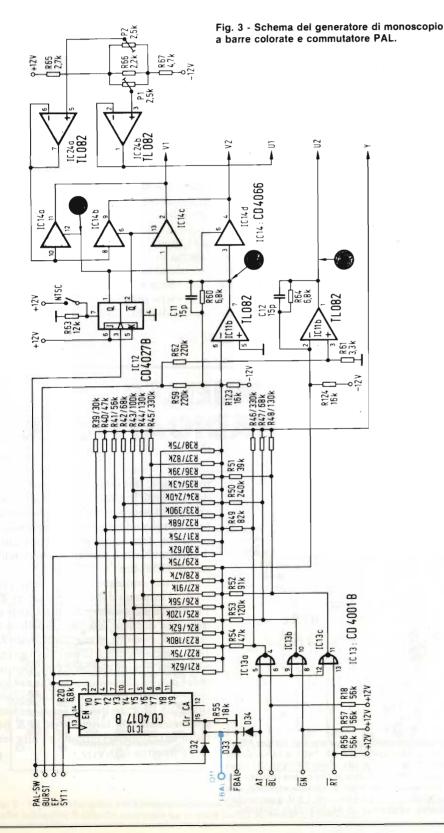
Dopo 8 x 160 μ s = 1,28 ms, il contatore IC7 raggiungerà lo stato in cui Y9 è "attivo". Di conseguenza viene resettato il flip flop formato da IC8a ed IC8b. Solo un nuovo reset dei contatori IC3b, IC4a ed IC4b farà commutare un'altra volta il flip flop. Il segnale da 1,28 ms, prelevato dall'uscita del flip flop (piedino 11 di IC8b), viene inviato alla porta logica IC9a, per essere poi utilizzato come impulso di cancellazione verticale.

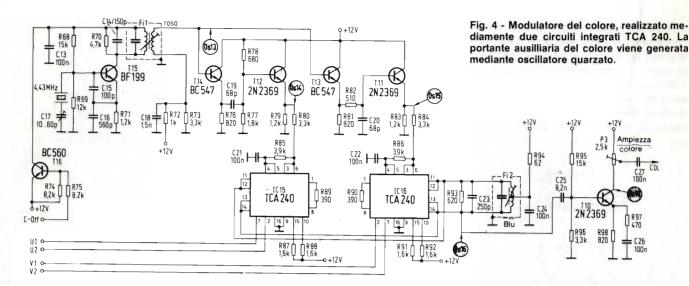
Durante i primi 3 x 160 µs dell'intervallo di cancellazione viene prodotto, mediante il collegamento OR dei diodi D29...D31, un segnale che esclude IC5 tramite D8, lasciando così libero di funzionare il monostabile IC6. Quest'ultimo, che è fatto scattare da Q0 di IC2b tramite C7, produce un impulso della durata di 2,5 µs ogni 32 µs. Questi impulsi (detti "equalizzatori") appaiono in sostituzione dell'impulso di sincronismo orizzontale, durante l'intervallo di 3 x 160 µs. Durante gli impulsi equalizzatori non appare alcun impulsoporta per il burst. In figura 2 è possibile osservare le forme degli impulsi più importanti, con le relative caratteristiche di sincronismo e di ampiezza.

Un impulso della durata di 200 ns ogni 3,2 µs viene generato tramite i diodi D2...D5: questi impulsi formeranno le linee verticali del reticolo. In IC8c, questi impulsi vengono collegati, secondo la funzione OR, con i fronti positivi degli impulsi provenienti, tramite C100, dall'uscita Q3 di IC3b, in modo che all'uscita risulti disponibile il segnale per una figura a reticolo. D1 protegge l'ingresso della porta logica dai picchi di tensione negativi ed IC8d inverte il segnale.

IC13d accoppia il segnale \overline{GT} proveniente dalla tastiera con il segnale di cancellazione AT, in modo che con un livello di \overline{GT} pari a 0 V, appaia al piedino 3 di IC13d un livello di 12 V durante la fase del bianco. Di conseguenza, non passerà più corrente attraverso il diodo D14a. T3, collegato come inseguitore di emettitore, potrà poi trasmettere gli impulsi del reticolo al miscelatore video. Nel punto GO sarà disponibile il segnale per il miscelatore video.

Il monoscopio a barre di colore ed il commutatore PAL dovranno essere realizzati secondo lo schema di figura 3. Questo circuito produce il segnale di luminanza e la tensione di pilotaggio per i modulatori del colore. Per la produzione del segnale normalizzato per le barre di colore, viene prelevato, per mezzo del sincronismo SYT1, il segnale presente su Q5 di IC1 (figura 1); questo segnale farà avanzare il contatore IC10 (piedino 14). Ogni 6,4 µs viene attivata la successiva uscita Yn. Quando una qualsiasi uscita Yn assumerà il livello di +12 V, sarà in grado di erogare, tramite il resistore collegato, una


corrente proporzionale alla tensione di uscita del successivo amplificatoresommatore.


Quando PAL-SW, FBAL ed AT saranno a livello di 0 V, IC10 avrà la possibilità di funzionare (l'interconnessione avviene tramite D32...D34). Se la suddetta condizione non è soddisfatta, IC10 verrà mantenuto nello stato "clear", cioè il livello su Y0 sarà di 12 V. Di conseguenza, le correnti provenienti, per esempio, dalle uscite di IC13a...c, potranno essere applicate al sommatore, tramite i resistori R48...R54, in modo che possano essere generati i singoli colori con un determinato grado di luminosità. Poichè, durante la fase di soppressione, non può essere applicato alcun segnale, la tensione di uscita di IC13a...c sarà uguale a zero. La condizione per la produzione di un singolo colore è che al rispettivo ingresso (RT, GN BL) sia applicata una tensione di 0 V.

IC11, che è un amplificatore operazionale doppio con frequenza limite di 3 MHz, funziona da sommatore per la produzione delle tensioni d'ingresso al modulatore per i segnali V ed U. Poichè all'ingresso di modulazione del modulatore è necessario applicare una tensione di circa 5 V e le correnti positive producono, a causa dell'effetto invertente, tensioni d'uscita negative, i resistori R123 ed R124 collegati a -12 V produrranno uno spostamento del punto di lavoro in modo da portare il livello di riposo a circa 5 V.

Possibilità di visualizzare un solo colore

Durante le fasi nelle quali non viene visualizzato alcun colore (schermo bianco o nero, od anche nell'intervallo di cancellazione), viene fatta passare una corrente nei resistori R21, R30, R22, R31, R29 ed R38; questa corrente, insieme a quella che passa attraverso R123 ed R124, stabilisce il punto di zero del modulatore. IC24 a e b, collegati come inseguitori di tensione, producono (per ciascun circuito integrato modulatore) una tensione che, applicata all'ingresso di un modulatore su due, permette un esatto aggiustamento della soppressione della portante quando l'immagine non è a colori. Mentre per la produzione dei colori nel monoscopio a barre colorate, Y0 di IC10 deve rimanere attivato, il collegamento EF viene posto a 0 V, mediante un tasto, durante il funzionamento a colore singolo. R59 trasmette il segnale-porta per il burst ad IC11a.IC11b riceve il segnale del burst tramite il partitore di tensione R62/R61, collegato all'ingresso non in-

vertente. Di conseguenza, viene ottenuta la corretta fase del burst (180 \pm 45 gradi).

Il principio del sistema PAL consiste nel fatto che, riga dopo riga, avviene uno sfasamento della portante della componente V pari a 180 gradi. Il circuito integrato modulatore (TCA 240 di figura 4) ha due ingressi di modulazione: la differenza tra le tensioni applicate a questi ingressi determina l'ampiezza del segnale d'uscita ed il segno di questa differenza ne determina la fase;

di conseguenza, il circuito integrato del modulatore V viene pilotato tramite un interruttore analogico inserito in un circuito a ponte.

L'interruttore analogico è IC14. IC14a e d, come pure IC14b e c, sono collegati ciascuno ad una delle uscite Q e rispettivamente Q di IC12. Le uscite IC14 a e c ed IC14 b e d sono collegate tra loro. Da esse vengono prelevati i segnali V1 e V2 per il modulatore. Questa disposizione ha come conseguenza che, a seconda dello stato del flip-flop

IC12, varia a righe alternate la successione al modulatore d'ingresso della tensione di riferimento e del segnale di modulazione.

I segnali U1 (tensione di riferimento del modulatore U) ed U2 (segnale di uscita di IC11b) sono collegati direttamente al modulatore. Il miscelatore video viene alimentato con il segnale Y, che viene prelevato dai terminali in comune di R39...R48.

(Continua)

CONTATORE DI GEIGER-MUELLER PER LA MISURA DELLA RADIOATTIVITA'

Trasformatore con nucleo ad olla

O. Kobelentz

a descrizione del contatore di Geiger Mueller pubblicata nel numero di Selezione del mese di Dicembre, necessita di alcune aggiunte. Secondo la disposizione dei componenti, al tubo contatore viene applicato un carico capacitivo, dovuto al cavo per alta frequenza. Secondo il foglio dati Philips, una capacità in parallelo agli elettrodi può esercitare un'influenza negativa sulla delimitazione del plateau di un tubo contatore di Geiger Mueller, come è possibile osservare sulla figura 2 dell'articolo originale.

Il resistore in serie (valore minimo $4,7~M\Omega$) è montato sul circuito stampato dell'alta tensione. Questo resistore dovrebbe essere invece montato all'interno della guaina di protezione del tubo contatore e direttamente collegato al contatto anodico a molla del tubo. Un altro resistore sul circuito stampato dello strumento potrebbe servire da

Nuova versione del contatore di Geiger Mueller. Il tubo contatore ZP 1401 è la versione, sensibile ai raggi alfa, dello ZP 1400. D1 deve essere un diodo veloce che possa resistere ad una tensione di 1000 V. Questa versione, che utilizza un'alimentazione di 1,5 V, è particolarmente adatta per un apparecchio portatile.

protezione, per evitare le conseguenze dei contatti inavvertiti con l'alta tensione. Un sovraccarico del tubo contatore, dovuta ad una capacità eccessiva, potrebbe provocare una diminuzione della sua durata, perchè si esaurisce il gas di riempimento.

In questo contesto viene consigliato anche l'impiego del tubo contatore ZP 1401, perche, possedendo una sottile finestrella di mica, questo modello è la versione sensibile ai raggi alfa dello ZP 1400. Nella figura è illustrato un interessante circuito, che ha il vantaggio di poter essere alimentato da una tensione di 1,5 V ricavata da una pila mignon tipo stilo (R6); da questa tensione vengono ricavate la tensione di 12 V per l'alimentazione del circuito e l'alta tensione di circa 500 V.

FREQUENZIMETRO DIGITALE SEMPLIFICATO

di Stanislav R. Kriz

Il frequenzimetro digitale è uno strumento che non può mancare nel laboratorio del tecnico elettronico, ed è utile quasi quanto il tester. Lo strumento presentato in questo articolo è molto semplice, economico,e comodo da usare pur essendo abbastanza preciso.

er effettuare alcune misure sono necessari talvolta due o più frequenzimetri digitali, che sono generalmente adoperati per breve tempo e per misure semplici. Non sempre è necessario per queste misure un frequenzimetro digitale "completo", e lo strumento presentato in questo articolo costituisce un'alternativa utile ed economica. La costruzione sarà facile e rapida, con possibilità di utilizzare anche materiale già disponibile tra i componenti di scorta normalmente presenti in qualsiasi laboratorio.

La figura 1 mostra un contatore a 4 decadi, costruito utilizzando tre circuiti integrati e quattro transistori. Un circuito integrato SS 8600 (produzione Suwa Seikosha) genera la base dei tempi. Questo circuito integrato (IC1) è mon-

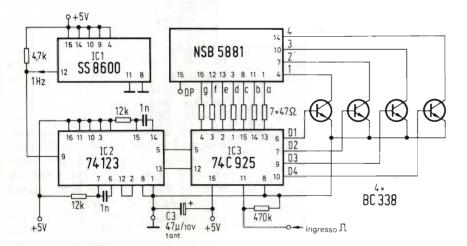
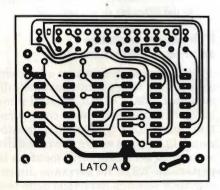



Fig. 1 - Frequenzimetro digitale a quattro cifre: strumento molto utile per essere impiegato in funzioni ausiliarie durante le misure.

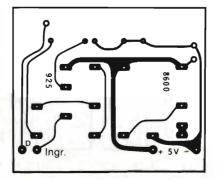


Fig. 2 - Circuito stampato per il frequenzimetro a quattro cifre. Per poter costruire uno strumento molto compatto, il circuito stampato ha le piste incise su entrambe le facce.

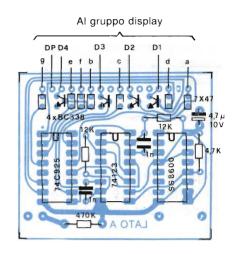


Fig. 3 - Disposizione dei componenti sul circuito stampato. Per collegare le piazzole sovrapposte sulle due facce, vengono utilizzati i terminali dei componenti.

tato in un circuito oscillatore a quarzo programmabile con un divisore di frequenza CMOS e frequenza del risonatore di 600 kHz. Al piedino 12 saranno disponibili impulsi ad 1 Hz, che verranno successivamente elaborati da IC2 (74123) allo scopo di pilotare IC3 (74C925).

Per visualizzare la frequenza è possibile impiegare praticamente qualsiasi display con catodo comune (per esempio il display a quattro cifre NSB 5881 della National Semiconductor). Per motivi d'ingombro il circuito stampato (figura 2) è del tipo a doppia faccia incisa. I collegamenti di uscita di questo circuito stampato corrispondono a quelli del c.s. del display. La figura 3 mostra la disposizione dei componenti. Il collegamento tra le piste superiori ed inferiori del circuito stampato avviene mediante i terminali dei componenti, che dovranno essere saldati con molta attenzione sulle piazzole di entrambe le facce. La funzione del condensatore elettrolitico C3 (47 µF al tantalio) è molto importante, in quanto dovrà sopprimere la tensione di multiplex sul conduttore di alimentazione.

Bibliografia

- G. Mayer: Vierstelliger Zaehler mit minimalem Aufwand (frequenzimetro digitale a quattro cifre di massima semplicità). FUNKSCHAU 1978, Fascicolo 22, pagina 1112.
- (2) Fogli dati SS 8600 ed 8640 B. Suwa Seikosha.
- (3) CMOS Databook 1978 (NSB 5881). National Semiconductor.

CIRCUITO DI PROTEZIONE PER STRUMENTI AD INDICE

di Juergen Lindner

Questo circuito genera un segnale ottico ed acustico quando venga superata la corrente di fondo scala di uno strumento di misura ad indice. Un relè interrompe inoltre il collegamento allo strumento per evitare che venga danneggiato l'equipaggio mobile.

li apparecchi di misura con strumento indicatore ad indice sono molto inclini a subire danni quando venga ripetutamente superata la portata massima di misura: questi possibili danni possono essere dovuti a sollecitazioni di natura elettrica o meccanica. Anche quando venga posta la massima attenzione a non mandare in sovraccarico lo strumento, potrebbe accadere, nel corso di operazioni molto laboriose e difficili (per esempio durante la messa a punto o la taratura del circuito sottoposto a misura), che vengano superati inavvertitamente ed involontariamente i limiti massimi della portata dello strumento. In questi casi il circuito presentato in questo articolo staccherà lo strumento ed avviserà l'operatore mediante l'accensione di un LED ed un breve segnale acustico. Un campo di impiego tipico per questo circuito riguarda gli strumenti molto sensibili, con portata finemente suddivisa, per esempio i millivoltmetri.

Un circuito ritardatore evita interventi intempestivi della protezione

Il funzionamento del circuito potrà essere facilmente compreso osservando lo schema a blocchi di *figura 1*. Il circuito da proteggere potrà essere a corrente continua oppure a corrente alternata; in quest'ultimo caso, la corrente alternata verrà convertita in corrente continua mediante il rettificatore IC1.

L'accoppiamento in tensione continua è necessario specialmente nei millivoltmetri: in questo caso potrebbe essere difficile prelevare nel circuito una tensione continua utilizzabile perchè di norma lo strumento indicatore è inserito, con il suo rettificatore, nell'anello di controreazione dell'ultimo stadio amplificatore. Se è disponibile una tensione continua nello strumento di misura, non sarà più necessario montare IC1 ed i componenti ad esso collegati; la tensione continua potrà essere diret-

tamente accoppiata ad IC2a, tramite R1. Entrambe queste varianti costruttive sono indicate sullo schema elettrico.

Lo stadio successivo è un comparatore (IC2a). Con il potenziometro di taratura P, viene predisposta la soglia di intervento della protezione; R5 ed R6 producono una piccola isteresi, allo scopo di evitare un funzionamento instabile del comparatore (figura 2).

Poichè questo circuito reagisce anche ad impulsi di breve durata (specialmente se in rapida successione), che potrebbero provocare un distacco intempestivo dello strumento di misura, è stato montato il circuito di ritardo basato su IC2b. Il condensatore C3 viene messo in cortocircuito da IC2a, tramite D3; IC2b va in conduzione ma tornerà allo stato primitivo, dopo il distacco del comparatore, quando la tensione ai capi del condensatore C3 (caricato tramite R7) perverrà ad un livello pari a metà della tensione di alimentazione.

Il segnale d'uscita del circuito ritardatore pilota, tramite T1, un relè ed un diodo LED che potrà essere montato sul pannello frontale dello strumento per segnalare l'intervento della protezione.

Gli amplificatori operazionali IC2c ed IC2d servono a generare il segnale acustico di avviso. IC2c funziona come multivibratore monostabile pilotato tramite il circuito differenziatore C4/R11. Il multivibratore monostabile permette il funzionamento del successivo multivibratore astabile IC2d per due impulsi esatti; perciò il cicalino elettronico emetterà un breve segnale acustico, inconfondibile ma tuttavia non tale da recare disturbo.

Variando il valore di R13 (numero dei segnali) ed R17 (frequenza del segnale), sarà possibile abbreviare o prolungare a volontà il segnale. Il circuito differenziatore C4/R11 garantisce che il segnale acustico venga prodotto esclusivamente in conseguenza all'intervento del circuito di protezione.

Il circuito è adattabile ad un qualsiasi strumento

Sarà possibile costruire questo circuito su una basetta stampata delle dimensioni di 90 x 60 mm (piste di rame in figura 3, disposizione dei componenti in figura 4). La tensione di alimentazione (12 V) potrà essere ricavata dallo strumento nel quale verrà montata la protezione. R3 ed R4 verranno dimensionate a seconda del livello della tensione continua o della tensione alternata che corrisponde al fondoscala dello strumento, in modo da prestabilire il

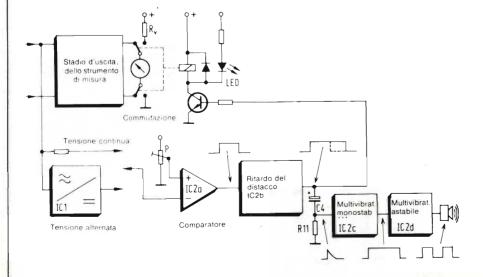


Fig. 1 - Schema a blocchi del circuito di protezione per strumenti ad indice. Un relè staccherà lo strumento in caso di sovraccarico.

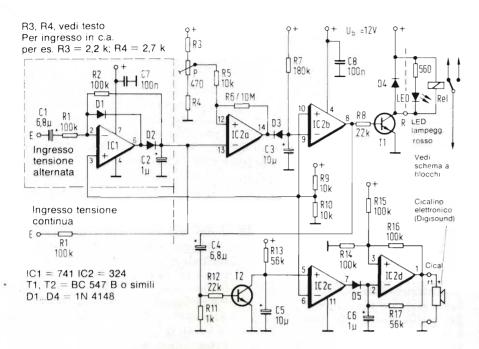


Fig. 2 - Schema elettrico del circuito di protezione con segnalazione ottica ed acustica. La rettificazione con IC1 è necessaria soltanto quando il segnale d'ingresso è una tensione alternata.

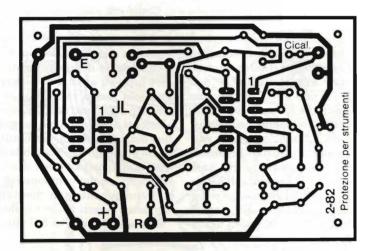


Fig. 3 - Piste di rame del circuito stampato per la costruzione del dispositivo di protezione per strumenti ad indice.

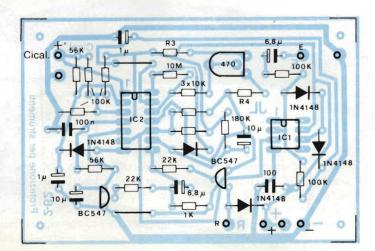


Fig. 4 - Disposizione dei componenti sul circuito stampato. Per il valore di R3 ed R4, vedi testo.

campo di regolazione di P. E' necessario ricordare che, in caso di mancanza di un segnale d'ingresso, l'uscita del rettificatore sarà ad un livello pari a metà della tensione di alimentazione; a questo valore dovrà essere aggiunta anche la tensione alternata rettificata. La caduta su R4 dovrà perciò essere uguale a metà della tensione di alimentazione.

La migliore soluzione consisterà nel prelevare la tensione d'ingresso per il circuito di protezione prima dell'ultimo stadio precedente lo strumento indicatore. In ogni caso, questa tensione dovrà essere prelevata dopo il selettore delle portate. I collegamenti allo strumento ad indice dovranno essere interrotti, inserendo in queste interruzioni i contatti del relè. Allo scopo sarà opportuno mantenere a fondo scala (mediante il resistore Rv) l'indice dello strumento di misura disinserito, in modo da evitare violenti movimenti dell'indice al momento del distacco. Il valore del resistore Rv dovrà essere determinato sperimentalmente (in ogni caso dovrà essere dell'ordine dei $k\Omega$).

Se uno dei terminali dello strumento di misura è direttamente collegato a massa, sarà sufficiente un relè con un solo contatto di scambio: è consigliabile usare per questo scopo un relè reed. In parallelo alla bobina del relè è collegato un diodo LED che, montato sul pannello anteriore dello strumento, indicherà il distacco dell'indicatore. Sarà molto utile montare, per questa funzione, un LED lampeggiante. Per la messa a punto del circuito sarà sufficiente portare l'indice in una posizione poco al di là del fondo scala, regolando poi P fino a provocare l'attivazione del circuito di protezione.

GENERATORE DI FUNZIONI VOBULATO

di A. Schulz, J. Karl e P. Sedlnitzky - Parte seconda

Nello studio di questo generatore vobulato, è stata data una grande importanza alla compattezza costruttiva. Nella prima parte di questo articolo sono state trattate le operazioni che è possibile eseguire con l'apparecchio, e le sue più importanti funzioni. In questa seconda parte verranno descritti il circuito d'uscita e la costruzione in generale. La taratura del circuito verrà spiegata con l'aiuto di una tabella, per facilitare le relative operazioni.

Circuito di uscita

Il circuito integrato XR 2206 eroga (purtroppo) segnali sinusoidali e triangolari con livelli ed impedenze diversi, rispetto al segnale ad onda rettangolare. Per ottenere all'uscita livelli uguali, sarà necessario un circuito di adattamento. Per le onde sinusoidali e triangolari vengono ottenuti i livelli di 2 V regolati mediante P12 e P13 ed i segnali vengono prelevati dal piedino 2 del 2206; la tensione ad onda rettangolare viene invece ricavata dal piedino 11 ed il suo livello e la sua impedenza vengono adattati, mediante T11 e P16, a quelli dell'onda sinusoidale e triangolare. La componente c.c. viene corretta mediante P17. T12 funziona da invertitore veloce per la sincronizzazione dei denti di sega e per la commutazione di frequenza del 2206.

Ai contatti del commutatore S1c sono disponibili tutte e tre le forme d'onda, con la medesima ampiezza e con il medesimo livello di componente continua. T15 pilota, come inseguitore di emettitore, il partitore per il commutatore dei livelli c.c. e l'attenuatore a regolazione continua. A causa della forte differenza tra i diversi esemplari di un medesimo tipo di potenziometro logaritmico, viene impiegato in questo caso un potenziometro lineare la cui caratteristica viene resa logaritmica mediante l'aggiunta di resistori fissi.

Il successivo amplificatore d'uscita è un circuito a tre stadi, con accoppiamento galvanico, doppio prestadio a FET, pilota con duplicatore di tensione (la duplicazione della tensione viene effettuata mediante C25) e stadio finale in controfase munito di resistori di emettitore di valore relativamente elevato: in questo modo verrà garantita una regolazione automatica del punto di lavoro, con distorsione di cross-over

relativamente ridotta. L'amplificatore viene regolato per un guadagno di 20 dB, mediante P21, un potenziometro inserito nel circuito di controreazione; questo accorgimento permette di ottenere un'ottima linearità della risposta fino alla frequenza di circa 1 MHz. La posizione del livello c.c rispetto alla linea dello 0 viene regolata mediante P22.

Se il circuito d'uscita dovesse manifestare tendenza all'oscillazione, sarà necessario aggiungere condensatori di controreazione ai circuiti di T16 e di T17. Durante le prove dell'apparecchio è risultato però che soltanto il condensatore C40 è effettivamente necessario.

Dopo gli stadi finali, il segnale raggiunge l'attenuatore variabile comandato mediante S6; mediante S7, sarà possibile inviare il segnale all'uscita con accoppiamento diretto oppure capacitivo. La piccola lampadina inserita nel ramo a 0 dB di S6 limita la cor-

rente d'uscita, proteggendola contro i cortocircuiti, anche permanenti.

Alimentazione

Mediante i regolatori integrati 7924 e 7824 vengono dapprima ottenute le due tensioni di alimentazione di ±24 V per l'amplificatore finale. I successivi regolatori di tensione 7915 e 7815 forniscono l'alimentazione per il resto del circuito.

I regolatori di tensione 78XX, per la tensione di alimentazione positiva, possono essere direttamente fissati mediante viti sulla parete posteriore del mobiletto, allo scopo di permetterne il raffreddamento. I regolatori 79XX (per tensione negativa) dovranno essere montati sulla parete posteriore del mobiletto tramite un kit di isolamento, in quanto le piastrine di raffreddamento di questi circuiti integrati non sono al potenziale di massa.

Montaggio su circuito stampato

Come era possibile vedere sulla foto pubblicata nella prima parte di questo articolo e come risulta evidente osservando la serigrafia delle piste di rame, il montaggio dello strumento potrà essere fatto su un circuito stampato con una sola faccia ramata ed incisa. Sul circuito stampato non sono montati gli elementi di regolazione, come il regolatore della frequenza, i commutatori e le prese di segnale. E' possibile osservare questa disposizione nel disegno della disposizione dei componenti di figura 6. I componenti non montati sul c.s. verranno fissati sul pannello frontale.

Il mobiletto scelto è il tipo Amtron

Seneratore vobulato

Fig. 5 - Piste di rame del circuito stampato per il generatore di funzioni.

OO/3008-30. Per facilitare il montaggio dell'apparecchio, cioè per garantire il successo anche ai costruttori non professionisti, le singole operazioni di montaggio e messa a punto verranno elencate, nella sequenza più efficace, in una tabella allegata a questo articolo.

Il montaggio dei componenti sul circuito stampato dovrà avere inizio con i ponticelli di collegamento in filo nudo; successivamente dovranno essere montati tutti gli altri componenti in ordine di altezza, cominciando con i più bassi. Per i circuiti integrati in contenitore DIL, sarà opportuno utilizzare appositi zoccoli. Gli stabilizzatori di tensione dovranno essere saldati in modo che le piastrine di raffreddamen-

PRODOTTI **CHIMICI**

LACCA PROTETTIVA "BITRONIC" Mod. LA/PR-103

Lacca protettiva trasparente, lascia una patina lucida e trasparente elastica che aderisce a qualunque superficie, isola conduttori nella radio e nella televisione, protegge da corti circuiti di alta e bassa tensione, impermeabilizza discese di antenne contro il passaggio di umidità, protegge contro l'acqua, gli agenti atmosferici, resistente agli acidi, olii, minerali

Bombola spray da 200 ml.

LC/5040-00

OLIO ISOLANTE "BITRONIC" Mod. OL/IS-106

Olio silicone isolante con elevata resistenza di perforazione. Non si secca evita adescamenti e scintille da zoccoli di valvole e trasformatori di alta tensione, elimina correnti di dispersione ed impedisce effetti corona, aiuta nei connessi di bobine e filtri di banda, preserva dall'umidità e possiede eccellenti qualità dielettriche, non attacca ne corrode i materiali e può essere usato nell'ambito di temperature da -30 °C a +200 °C

Bombola spray da 200 ml. LC/5050-00

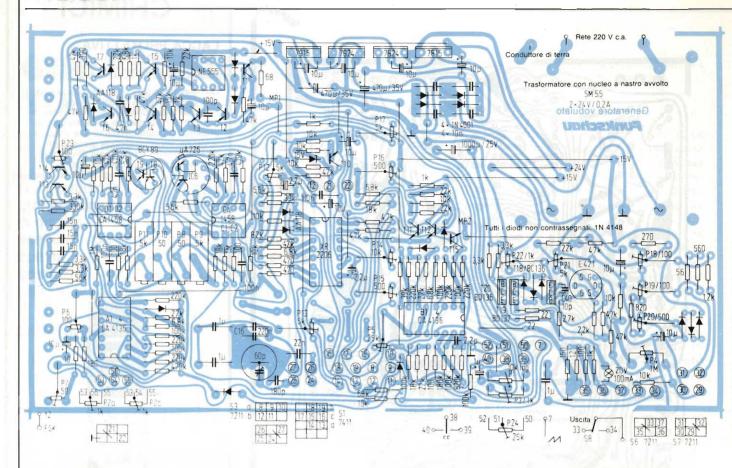


Fig. 6 - Disposizione dei componenti, con indicazione delle boccole esterne e degli elementi di comando. I collegamenti ai comandi sul pannello frontale sono visti dal lato rame del circuito stampato.

to possano appoggiarsi, dopo il completamento del montaggio, alla parete posteriore del mobiletto. Anche i transistori degli stadi finali dovranno essere muniti di dissipatori termici, e perciò intorno ad essi dovrà essere previsto un sufficiente spazio libero. I potenziometri P1, P3, P4 e P24 dovranno essere saldati soltanto al termine del montaggio dell'apparecchio.

Sarà possibile preparare il pannello frontale anche prima di aver terminato il montaggio dei componenti sul circuito stampato. La piastra frontale di alluminio verrà dapprima forata, secon-

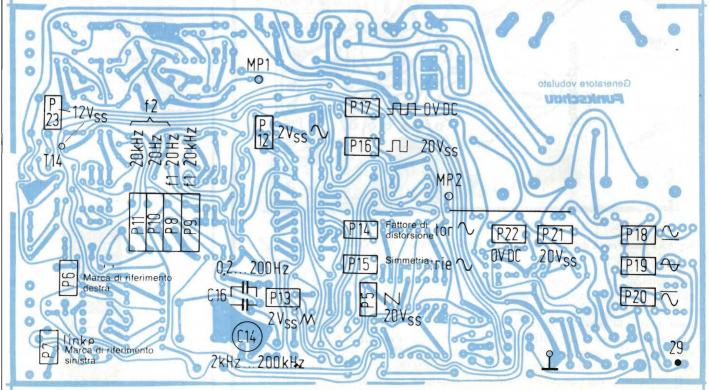
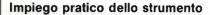


Fig. 7 - Per facilitare la taratura, in questa figura è possibile osservare la disposizione dei punti di regolazione e di misura.

Predisposizione dell'apparecchio	Punto di misura MP	Regolazione di	Risultato della regolazione
Posizione iniziale de	i comandi		
. Tutti i potenziomet	tri in posizione centr	ale	
S1: Sin			
S2: f x 1			
S3: Gen			
S4: f1			
S5: 0			
S6: 0 dB			
S7: S8: c.c.			
36. C.C.			
	ione a denti di sega MP1	Contr.	Tensione a denti di sega
	IVIPI	Contr.	0,610,6 V, 50 Hz
P1: 50 Hz 3. P24: finecorsa	Droes use	P5.	Denti di sega a rampa
	"denti di sega"		discendente, 20 Vp-p
4. P24: finecorsa		Contr.	Denti di sega a rampa
destro "denti	, , , , , , , , , , , , , , , , , , , ,		
di sena		ascendente, 20 Vp-p	
Regolare, dopo il pu	into 18. e mediante F	P13, il livello al punto M	P2 al livello di 2 Vp-p.
Regolazione prelimi	nare P2		
5. S2: f x 1	Boccola uscita	P24	Regolare l'oscilloscopio
S5: vobul.			in modo che risulti visibil
Collegare			
la boccola			una banda di frequenza
di uscita			
della tensione			vobulata con la minima
			frequenza, a sinistra dello schermo.
a denti di sega			Portare l'oscillogramma
di vobulazione			al centro dello schermo,
all'ingresso X			occupando tutta la
dell'oscilloscopio			larghezza
			del medesimo.
6. S3: Tarat.	Presa "Uscita"	P7	Posizionare le marche
P2: f1 ed f2 al			di riferim. esattamente
finecorsa			al margine sinistro
sinistro		D 0	Desisionera la maraba
7. P2: f1 ed f2 al	Presa "Uscita"	P6	Posizionare le marche di riferim, esattamente
finecorsa destro			al margine destro
Limiti delle bande d	li frequenza		
8. S1: Rettangol.	Presa "Uscita"	P8	Misurare con frequenzim digit, un periodo di 50 ms
			aigit, un periodo di 50 mi
S3: Gen			
P2: f1 - 20 Hz	Prope "Llegite"	DO	Frequenza 20 kHz
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz		P9 P8 P9	Frequenza 20 kHz
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1	Presa "Uscita"	P9 P8, P9	
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1	Presa "Uscita" la regolazione tra		
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente	Presa "Uscita" la regolazione tra 20 Hz	P8, P9	
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1	Presa "Uscita" la regolazione tra	P8, P9	
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du	P8, P9	
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita"	P8, P9 e P10	Ripetere alternativamente
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti	P8, P9 e	Ripetere alternativamente limite corrisponderanno Frequenza 20 Hz
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita"	P8, P9 e P10	Ripetere alternativamente limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2 alternativamente	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita"	P8, P9 e P10	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz. tra 20 Hz
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita"	P8, P9 e P10	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz, tra 20 Hz e 20 kHz, fino a quando
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2 alternativamente	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita"	P8, P9 e P10	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz. tra 20 Hz e 20 kHz, fino a quando entrambi
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2 alternativamente	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita"	P8, P9 e P10	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz, tra 20 Hz e 20 kHz, fino a quando
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2 alternativamente	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita"	P8, P9 e P10	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz, tra 20 Hz e 20 kHz, fino a quando entrambi i punti limite
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2 alternativamente tra 20 Hz e 20 kH:	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita"	P8, P9 e P10	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz, tra 20 Hz e 20 kHz, fino a quando entrambi i punti limite
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2 alternativamente tra 20 Hz e 20 kH; Onde sinusoidali e	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita" triangolari	P8, P9 e P10 P10, P11	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz. tra 20 Hz e 20 kHz, fino a quando entrambi i punti limite corrisponderanno
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2 alternativamente tra 20 Hz e 20 kH: Onde sinusoidali e 16. S1: sin	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita"	P8, P9 e P10	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz. tra 20 Hz e 20 kHz, fino a quando entrambi i punti limite corrisponderanno Simmetria delle semiond
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2 alternativamente tra 20 Hz e 20 kHz Onde sinusoidali e 16. S1: sin S2: f x 1	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita" triangolari	P8, P9 e P10 P10, P11	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz. tra 20 Hz e 20 kHz, fino a quando entrambi i punti limite corrisponderanno
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2 alternativamente tra 20 Hz e 20 kHz Onde sinusoidali e 16. S1: sin S2: f x 1 P2: f1 - 1 kHz	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita" triangolari	P8, P9 e P10 P10, P11	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz. tra 20 Hz e 20 kHz, fino a quando entrambi i punti limite corrisponderanno Simmetria delle semiond
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2 alternativamente tra 20 Hz e 20 kHz Onde sinusoidali e 16. S1: sin S2: f x 1	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita" z triangolari MP2	P8, P9 e P10 P10, P11	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz. tra 20 Hz e 20 kHz, fino a quando entrambi i punti limite corrisponderanno Simmetria delle semiond positiva e negativa
P2: f1 - 20 Hz 9. P2: f1 - 20 kHz 10. P2: f1 alternativamente 20 Hz20 kHz 11. S4: f2 P2: f2 - 20 Hz 13. P2: f2 alternativamente tra 20 Hz e 20 kHz Onde sinusoidali e 16. S1: sin S2: f x 1 P2: f1 - 1 kHz	Presa "Uscita" la regolazione tra 20 Hz e 20 kHz, finchè i du punti Presa "Uscita" Presa "Uscita" z triangolari MP2	P8, P9 e P10 P10, P11	limite corrisponderanno Frequenza 20 Hz Ripetere alternativamente la regolaz tra 20 Hz e 20 kHz, fino a quando entrambi i punti limite corrisponderanno Simmetria delle semiond positiva e negativa Forma d'onda sinusoidal

do lo schema di figura 1, per alloggiare i diversi componenti di regolazione e di uscita. L'interruttore generale e la spia di rete potranno essere, a scelta, un interruttore a tasto con lampada al neon incorporata, oppure un interruttore miniatura a levetta con indicatore a LED separato.


Successivamente, dovranno essere montati i potenziometri, le boccole ed i commutatori. I soli regolatori da montare sul pannello frontale saranno quelli per le frequenze. Prima del completamento del montaggio, dovrà essere ricavata, mediante un seghetto, una piccola cava nell'angolare destro di fissaggio del mobiletto, allo scopo di lasciare spazio sufficiente per il montaggio di S7.

Dopo l'assiemaggio definitivo del pannello frontale e del circuito stampato, sarà possibile procedere al montaggio finale. Il circuito stampato dovrà essere fissato, mediante viti, dadi e distanziali, agli angolari laterali del mobiletto in modo che esso rimanga all'incirca a metà dell' altezza del mobiletto e più possibile vicino al pannello posteriore. Fissare successivamente all'angolare il pannello frontale. Potranno essere poi eseguiti i cablaggi tra il pannello frontale ed il circuito stampato: questi collegamenti dovranno essere più corti possibile. Per il cablaggio dell'interruttore e della spia di rete, sarà vantaggioso adoperare conduttori intrecciati, per evitare l'induzione di ronzio. Se come spia di rete venisse impiegato un LED, questo dovrebbe essere alimentato, tramite un resistore da 680 Ω/1 W, dalla tensione continua di -15 V.

Sul pannello posteriore del mobiletto dovranno essere fissati i circuiti integrati stabilizzatori, il passacavo per il cordone di rete ed eventualmente un portafusibile con fissaggio a ghiera filettata. Per i regolatori di tensione 79XX sarà necessario un kit di isolamento, formato da una lastrina di mica e dalle boccole isolanti per le viti.

Prima di collegare per la prima volta la tensione di alimentazione, sarà opportuno effettuare un accurato controllo del montaggio elettrico del circuito. Sarà inoltre necessario misurare il valore delle diverse tensioni di alimentazione. Questi controlli dovranno essere eseguiti senza inserire i circuiti integrati negli zoccoli. Dopo i controlli, l'alimentazione verrà esclusa, i circuiti integrati verranno montati negli zoccoli e tutti i potenziometri verranno portati in posizione centrale: il circuito sarà così pronto per la taratura.

GENNAIO - 1984 65

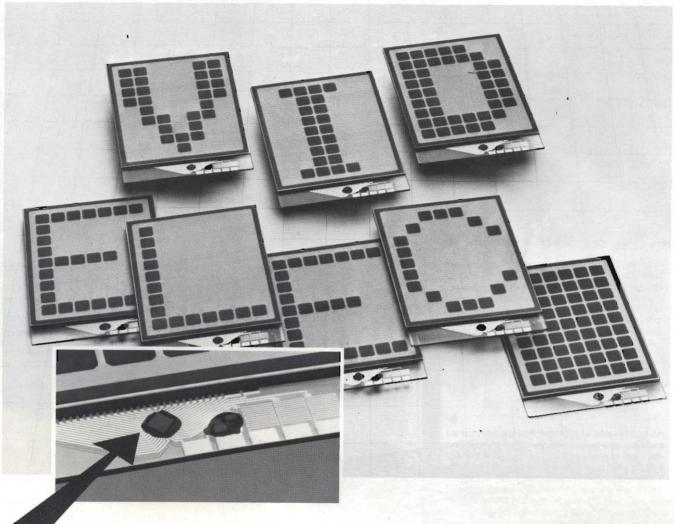
Dopo il collegamento della tensione di alimentazione, il circuito non sarà ancora a punto nè adatto all'impiego pratico. Nel caso di guasti od errori, sarà possibile localizzare il gruppo funzionale difettoso, leggendo la descrizione del circuito, ed individuare successivamente il componente guasto.

Volendo evitare che alcuni componenti si scaldino eccessivamente in caso di cortocircuito prolungato, sarà opportuno munire i transistori degli stadi finali di alette di raffreddamento.

Scelta dei materiali

Nella costruzione di uno strumento di questo genere, è importante impiegare esclusivamente materiali e componenti di ottima qualità, anche se i componenti indicati sullo schema sono di tipo normalizzato e non speciale.

Tabella di taratura


Per motivi di semplicità, le operazioni di messa a punto e taratura sono state ordinate in una tabella. Per le diverse regolazioni sarà necessario disporre di un oscilloscopio. Per ottenere la massima precisione delle frequenze generate, sarà opportuno utilizzare un frequenzimetro digitale. Per ritrovare facilmente i punti di taratura e regolazione, fare riferimento alla figura 7.

Una volta ultimate le operazioni di taratura, lo strumento sarà pronto per l'uso.

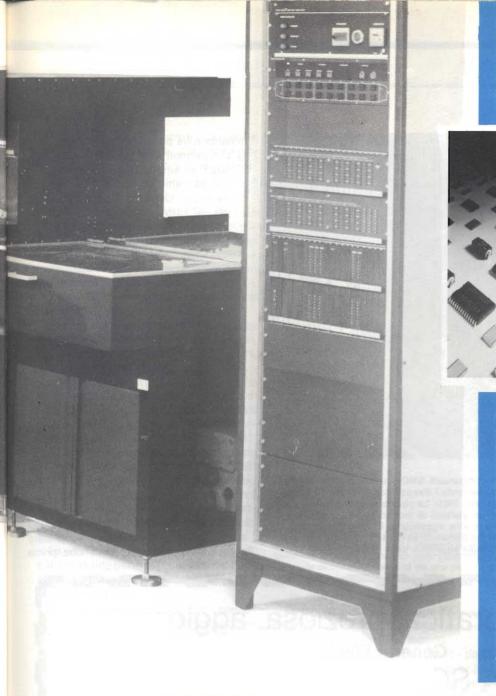
Portate di frequenz	a		
14. S2: f x 0,01 S4: f1	Presa "Uscita"	C16	Portare a coincidenza
15. S4: x 100	Presa "Uscita	C14	le scale: 0,2200 Hz Portare a coincidenza le scale: 2 kHz200 kHz
20. S1: Triangolare Collegare a	Presa "Uscita"	P29 .	0 V c.c.
massa il punto 29			
21. Scollegare P29 dalla massa S7:	Presa "Uscita"	P21	20 Vp-p
P4: 20 Vp-p 22. S7:	Presa "Uscita"	P20	Portare a 0 V c.c.
23. P4: 0,2 Vp-p	Presa "Uscita"	Contr.	il valore di picco superiore Portare a 0 V c.c. il valore di picco superiore
24. S7: P4: 20 Vp-p	Presa "Uscita"	P19	Portare la linea di 0 V c.c. a metà tra i due valori
25. P4: 0,2 Vp-p	Presa "Uscita"	Contr.	di picco Portare la linea di 0 V c.c. a metà tra i due valori di picco
26. S7: P4: 20 Vp-p	Presa "Uscita"	P18	Portare a 0 V c.c.
27. P4: 0,2 Vp-p	Presa "Uscita"	Contr.	il valore di picco inferiore Portare a 0 V c.c.
28. S1:	Presa "Uscita"	Contr.	il valore di picco inferiore Uguagliare la componente
alternativamente sin-triangolare		(Correzione con P14)	c.c. per onda sinusoidale e triangolare
Sili-tilaligolare		COIT F 14)	e trialigolate
Ampiezza onda reti 29. S7:	tangolare Presa "Uscita"	P16	20 Vp-p
S1: Rettangol. 30.	Presa "Uscita"	P17	Linea di 0 V c.c. a metà
31. S7:	Presa "Uscita"	Contr.	tra i due valori di picco Portare a 0 V c.c. il valore di picco inferiore
32. S7:	Presa "Uscita"	Contr.	Portare a 0 V c.c. il valore di picco superiore
		The state of the s	THE RESERVE OF THE PARTY OF THE
Modulazione 33.	Emettitore di T14	P23	Onda sinusoidale 12 Vp-p
34.	Emettitore di T14	Contr.	Frequenza circa 1 kHz
35. S5: AM P3: 100% P2: f1	Presa "Uscita"	Contr.	Livello modul. 100% (possibile una correzione mediante R74)
circa 10 kHz 36. S5: FM	Presa "Uscita"	Contr.	Rapporto delle frequenze
P2: f1 circa			fu : fo circa 1:2 (possibile una
7 kHz			correzione mediante R73)
Controlli generali			
37. Come 5.	Presa "Uscita"	Contr	La frequenza e l'ampiezza sono ora a punto, le marche
Huller Wil			di riferim. possono essere disposte esattamente
			da un margine all'altro dello
38. S1: Rettangol. S4: f1/f2	Presa "Uscita"	Contr.	schermo Rapporto impulso/pausa variabile da 1000:1
39. S1: Triangol.	Presa "Uscita"	Contr	ad 1:1000 Dente di sega - triangolare dente di sega 1000:1 1:1
40. S4: f1	Presa "Uscita"	Contr.	1:1000 Pilotare la boccola FSK con segnali logici
			rettangolari TTL o CMOS.
			L'uscita commuta tra f1 ed f2 al ritmo del segnale logico di pilotaggio "0" logico = f1; "1" logico = f2
			.,, , , , , , , , , , , , , , , , , , ,

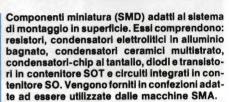
PHILIPS

CHIP ON GLASS = LA FLESSIBILITÀ

Il driver CMOS direttamente montato sul vetro risolve i complessi problemi di pilotaggio di pannelli "dot matrix" di grandi dimensioni.

- Matrice 7x9 Altezza carattere 80 mm
- Consumi bassissimi
- Elevata leggibilità
- Possibilità di realizzare display extra piatti


La documentazione dei suddetti componenti può essere richiesta a:


PHILIPS S.p.A. SEZ. ELCOMA - Ufficio Documentazioni Tecniche - P.za IV Novembre 3 - Tel. 02/67521 - 20124 MILANO

DISTRIBUTORI AUTORIZZATI PHILIPS-ELCOMA:

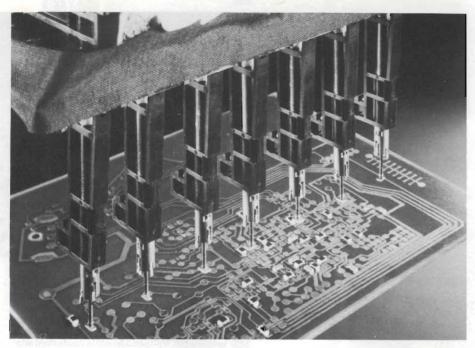
SEMPRE
VERSO IL PIU' PICCOLO ...

Le macchine per il montaggio automatico dei componenti in superficie hanno una struttura modulare. Si notino in primo piano le due "torrette carousel" per lo stockaggio delle piastre a circuiti stampato, rispettivamente nude e completate dei componenti. Al centro si trova il "cuore" della macchina, e cioè la testa, la quale, tramite le "pipette", provvede a prendere i componenti SMD e a disporii nella posizione corretta sulle piste di rame della piastra a circuito stampato.

n tutti i settori dell'attività industriale, le parole d'ordine date ai progettisti che lavorano nei laboratori di
ricerca e di sviluppo sono: realizzare prodotti che, a parità di prestazioni abbiano dimensioni più ridotte, siano meno costosi,
e posseggano un funzionamento sicuro
nel tempo. Questa linea di marcia è valida
in campo elettromeccanico ma principalmente in quello elettronico.

Le tecniche di elaborazione digitale hanno infatti consentito all'elettronica di introdursi in tutti i settori dell'attività umana, da quello della produzione a quelli amministrativi e del tempo libero. Questa "invasione" così rapida è dovuta ai grandi passi che, più di ogni altra attività umana, l'elettronica ha compiuto in questi ultimi decenni. Dalle valvole al transistore, al circuito integrato si è compiuto, ogni volta, un salto di qualità e di efficienza mai riscontrato in altri settori industriali. A sua volta, partendo dal circuito integrato, abbiamo assistito, prima a pochi componenti formati sulla piastrina di silicio (LSI), poi ad un numero sempre maggiore, a parità di unità di superficie (MSI e LSI), fino a raggiungere gli attuali livelli di densità di componenti integrati, quali si riscontrano nei chip dei microprocessori e dei microcomputer (VLSI).

Parallelamente si è sviluppata la tecnica della modularità. Tutte le attuali apparecchiature elettroniche hanno una struttura modulare, nel senso che le funzioni necessarie per espletare il compito che l'apparecchiatura è chiamata ad assolvere, vengono ripartite secondo criteri di logica funzionale, in un certo numero di piastre a circuito stampato (schede) sulle quali vengono saldati i componenti passivi (resistori e condensatori ecc.) e attivi (transistori e circuiti integrati) incaricati di effettuare le funzioni suddette.


La necessità di avere "schede" di dimensioni ridotte allo scopo di soddisfare esigenze particolari, da tempo ha dato vita ai cosiddetti circuiti ibridi a film spesso e sottile: quì, i componenti passivi e attivi vengono montati "nudi" (e cioè privi di terminali e di contenitore) su un supporto che non è una scheda a circuito stampato ma una piccola piastrina di materiale ce-

La tecnologia dei circuiti ibridi si è affermata da anni; è in continuo perfezionamento e ha dato vita ad una nuova famiglia di componenti attivi e passivi miniatura, sprovvisti di terminali e di contenitori, molti dei quali vengono prodotti in dimensioni e confezioni standard.

Parallelamente, fino a poco tempo fa, questa tecnologia era affiancata da quella delle schede a circuito stampato sulle quali venivano utilizzati componenti attivi e passivi con dimensioni standard.

L'esigenza di ridurre i costi di assiemaggio di queste schede, di ridurre le loro dimensioni e di ottenere un funzionamento sicuro delle medesime, ha fatto sorgere un'idea: perchè non utilizzare in queste schede componenti attivi e passivi, quali per esempio quelli impiegati per la realizzazione delle piastrine di circuiti ibridi a film spesso e sottile? Sembra un'idea ovvia, ma come al solito, pensata con un certo ritardo.

Ciononostante, questa idea è stata illu-

Particolare di una testa di posizionamento dei componenti SMD. La foto è stata ripresa nel momento in cui le "pipette" stanno posizionando secondo i due soli possibili orientamenti e nei punti esatti della superficie delle piastre, i componenti SMD. Le pipette afferrano il componente SMD mediante apposite ganasce. Posseggono un sistema di monitoraggio (camera a vuoto spinto) che segnala se il componente è stato veramente agganciato. Il componente SMD, una volta posizionato sulla superficie della piastra, viene trattenuto su di essa mediante un punto di colla che può trovarsi o sul componente SMD o sulla superficie della piastra.

minante e ha portato a sviluppare:

- componenti attivi e passivi miniatura adatti ad essere montati sulla superficie del rame delle piastre a circuito stampato. Questi componenti con sigla SMD (SMD = Surface Mounted Devices) sono in parte quelli già utilizzati per la realizzazione dei circuiti ibridi a film spesso e sottile, ed in parte, studiati ex novo per questa nuova tecnologia;
- macchine automatiche capaci di posizionare i componenti SMD nella posizione corretta sul disegno del rame della piastra, e successivamente di saldarli con i sistemi convenzionali.

Gli evidenti vantaggi

Il primo e il più ovvio è quello tendente a ridurre le dimensioni della piastra. Con il nuovo sistema chiamato SMA (Surface Mounting Assembley), nella superficie della piastra dove prima potevano stare 3 componenti, ora ce ne possono stare 6. Le dimensioni delle piastre risulteranno dimezzate. Conseguenza: le apparecchiature si ridurranno a metà sia in peso che in omensioni. Questa possibilità darà luogo alla produzione di nuove apparecchiature completamente trasportabili, che prima

Una guida pratica, preziosa, aggiornata General Electric LA SOPPRESSIONE DEI TRANSITORI DI TENSIONE

Un libro che riassume i risultati delle pluriennali ricerche effettuate da una delle massime industrie mondiali sulle cause, gli effetti, la frequenza dei sovraccarichi di tensione derivanti dai disturbi atmosferici o da altri motivi. Un'opera eminentemente pratica che si propone di dare ai tecnici un contributo fattivo alla soluziene di questo annoso problema, anche attraverso l'indicazione della vasta gamma di dispositivi di protezione che la G.E. ha messo a punto sulla scorta dei suoi studi e delle esperienze.

216 pagine. Lire 12.000 Codice 611 A

era impossibile immaginare a causa delle notevoli dimensioni delle piastre a circuito stampato. Un esempio di questa possibilità si è già avuta nelle telecamere e videoregistratori portatili.

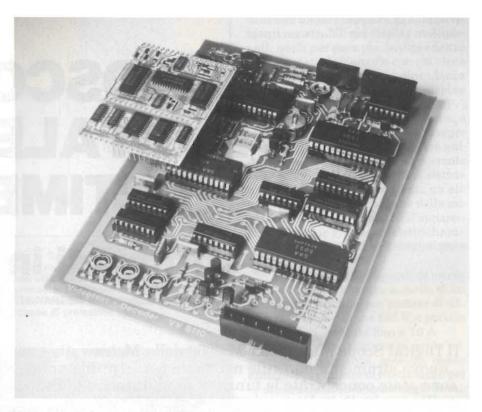
Il secondo riguarda la grande sicurezza di funzionamento nel tempo che avranno queste piastre, e di conseguenza le apparecchiature con esse realizzate. Tale sicurezza è dovuta semplicemente al fatto che non esistono più con il sistema SMA, le cause che producono l'insicurezza di funzionamento.

Queste cause sono costituite nelle piastre normali, dalla presenza dei terminali, dalla necessità di piegarli o attorcigliarli, di inserirli nei fori, ecc..

Tutti i componenti, essendo montati dalle macchine, hanno una probabilità di i su 100.000 di essere montati in maniera non corretta, e cioè una probabilità di errore di 10 ppm.

Il "cuore" di queste macchine è una "pipetta" che aspira il componente SMD fornito dalle relative confezioni (nastri su bobine), lo orienta nella maniera corretta e lo depone nel punto che questo componente dovrà avere nel rame del circuito stampato della piastra.

Le velocità di assiemaggio sono grandi, e di qui la riduzione nella misura del 50%, del tempo di assiemaggio rispetto ai sistemi convenzionali.


Il terzo vantaggio è la logica conseguenza derivante dall'impiego del sistema SMA cioè: riduzione dei costi, sia a causa del bassissimo numero di piastre risultate difettose al collaudo sia a causa dei tempi brevi e del ridotto personale richiesto dal sistema di assiemaggio SMA.

Si tenga presente che attualmente in una piastra assiemata con componenti standard, il costo del circuito integrato rappresenta solo 5% del costo complessivo mentre il costo di assiemaggio dei componenti "esterni" dell'integrato (in media ne occorrono 30 per ogni integrato) ammonta al 25%.

L'attuale tendenza a integrare nel chip dei circuiti integrati un numero sempre più grande di componenti renderà il suddetto rapporto sempre più grande, nel senso che il costo di assiemaggio dei componenti esterni all'integrato diventerà sempre più grande.

Solo le tecnologie di assiemaggio SMA sono pertanto in grado di bloccare ed eventualmente invertire questo rapporto.

In Europa, una società che sta muovendosi per introdurre questa nuova tecnologia è la Philips-Elcoma. Questa azienda produce da tempo componenti miniatura e impiega macchine di sua invenzione per il montaggio dei componenti nelle piastre destinate alle apparecchiature di sua produzione.

Questa foto indica uno degli obiettivi che si vuole raggiungere con l'introduzione dei componenti SMD e delle macchine per il montaggio automatico: ridurre del 50% (e anche di più) le attuali dimensioni delle plastre a circuito stampato montate nelle apparecchiature elettroniche. La foto indica le dimensioni assunte da una piastra di un decodificatore di segnali Videotext realizzata con componenti SMD.

La tecnologia SMA è attuata da questa società negli stabilimenti che essa possiede in tutte le parti del mondo.

Pertanto, quando questa azienda parla di tecnologia SMA (e questo lo sta facendo nei vari seminari che essa sta tenendo in Europa), ha tutte le carte in regola per farlo, in quanto può far vedere ai futuri acquirenti di componenti SMD e delle macchine per il loro montaggio (per la prima volta questa azienda vende anche le macchine) come il sistema SMA funziona nei suoi stabilimenti, e i vantaggi tangibili che esso porta.

I seminari che essa sta organizzando in Europa, e tra poco anche in Italia, hanno lo scopo di sensibilizzare i costruttori di apparecchiature su questa nuova e rivoluzionaria tecnologia, la quale richiede notevoli investimenti di capitali e personale altamente qualificato a tutti i livelli di lavorazione.

D'altra parte la posta in gioco è alta e non tutti attualmente se ne rendono conto. Infatti, gli anni '80 e '90 saranno quelli nei quali le tecnologie dei componenti perverranno al loro limite in termini di densità di componenti nel chip e di dimensioni dei componenti passivi discreti. Dopodichè, la fantasia dei progettisti dovrà sbizzarsi più che sulla tecnologia dei componenti, sulle applicazioni nuove e mai pensate fino ad allora che con questi componenti. divenuti standard, sarà possibile realizzare. A quella data, potranno sopravvivere solo quelle aziende che avranno tenuto il passo con queste nuove tecnologie di montaggio dei componenti, e cioè con le tecnologie SMA.

La Grundig costruisce VTR della serie VHS

a Grundig inizierà nelle prossime settimane a produrre video-registratori su licenza della Matsushita, conformi quindi allo standard VHS, rivelatosi dei tre quello commercialmente vincente. La Grundig ha comunque difeso la superiore validità tecnica del V2000, il VTR sviluppato congiuntamente con la Philips. I nuovi apparecchi saranno costruiti interamente in Germania.

OSCILLOSCOPIO DIGITALE PIU' MULTIMETRO

Tre strumenti in uno

ing. Werner Haussel, della METRAWATT

Il Digital Scope Multimeter M 2050 della Metrawatt, è un nuovo strumento portatile nel quale per la prima volta sono state concentrate le funzioni di multimetro digitale, oscilloscopio digitale e registratore di fenomeni transitori. Grazie alla combinazione di questi tre strumenti, il Digital Scope Multimeter M 2050 è in grado di misurare, visualizzare e memorizzare contemporaneamente il parametro sotto misura.

n questi ultimi tempi, i multimetri digitali hanno subito se non proprio cambiamenti rivoluzionari, certamente dei miglioramenti che facilitando la lettura, hanno consentito di ottenere una misura molto accurata dei parametri che solitamente questo tipo di strumento è chiamato a misurare. Così, per esempio, il risultato della misura può essere visualizzato in

forma digitale, e contemporaneamente anche analogica (vedi barra luminosa).

Cionostante, a questa classe di strumenti mancava qualche cosa, e certamente non di poco conto: con un multimetro tradizionale infatti la misura effettuata rimane "cieca", nel senso che, non è possibile rendersi conto dell'andamento nel tempo (forma della curva)

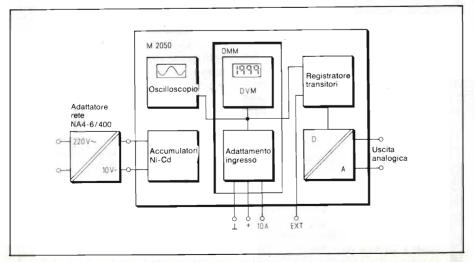


Fig. 1 - Schema a biocchi dei Digital Scope Multimeter M 2050 della Metrawatt. In pratica questo strumento incorpora tre altri strumenti distinti. Gli ingressi delle grandezze da misurare sono galvanicamente separati sia rispetto alla rete che all'uscita analogica.

della grandezza elettrica misurata.

La METRAWATT ha eliminato da questi strumenti anche quest'ultima 'manchevolezza''; il suo Digital Scope Multimeter M 2050 riunisce infatti in un unico apparecchio le caratteristiche e i pregi di un multimetro digitale con quelle di un oscilloscopio digitale a memoria e quelle di un registratore di transitori.

Struttura e caratteristiche del Digital Scope Multimeter

Il componente chiave che ha permesso la realizzazione pratica del Digital Scope Multimeter M 2050 è stato uno schermo piatto a cristalli liquidi, formato da una matrice di 8192 punti (punti-immagine 128 x 64). Un particolare sistema di pilotaggio ha consenti-

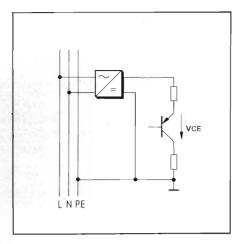


Fig. 2 - Se l'apparecchio di misura risulta isolato, come lo è appunto il Multimetro M 2050, non esistono problemi quando si desidera riprendere oscillograficamente l'andamento della tensione tra collettore ed emettitore (classe di protezione 2).

to di non andare incontro agli inconvenienti registrabili nei display multiplexati, quali per esempio, la dipendenza del contrasto dall'angolo con cui viene osservato lo schermo, e la dipendenza dalla temperatura. Su questo display sono state inoltre integrate anche 31/2 cifre per la funzione come multimetro, e altre informazioni aggiuntive come per esempio, l'unità di tempo, ed altre unità fisiche. L'assorbimento di corrente dello schermo piatto e di tutta l'elettronica dello strumento, consente un'alimentazione da accumulatore nella misura di 8 ore continue. Nell'apparecchio spento, le grandezze elettriche misurate possono rimanere memorizzate per mesi.

Il multimetro M 2050 possiede un circuito d'ingresso identico a quello di un multimetro digitale con portate di misura di tensione fino a 650 V, e portate di misura di corrente fino a 10 A.

Le due portate aggiuntive per la misura della resistenza possono essere utilizzate per misure di continuità o per la misura della resistenza degli avvolgimenti di motori o di trasformatori.

Le portate di misura rispettivamente delle tensioni e delle correnti (multimetro) sono nello stesso tempo adattate anche per l'ingresso dell'oscilloscopio (figura 1); ciò significa che sullo schermo piatto a cristalli liquidi sarà possibile osservare l'andamento (valore di picco) di tensioni fino a 1100 V e parimente l'andamento di correnti (valori di picco) fino a 60 A.

Ovviamente, le tensioni e le correnti d'ingresso dovranno avere valori efficaci tali da non dare valori di picco superiori a quelli sopra indicati.

L'immagine del parametro misurato può inoltre essere espansa nella misura da 2 a 4 volte. Prima di effettuare la misura, l'utilizzatore ha la possibilità di scegliere una visualizzazione della forma d'onda del parametro che sta misurando, in valori istantanei oppure efficaci.

La frequenza massima di campionamento del convertitore analogico/digitale è 512 kHz, la frequenza-limite dell'adattamento di ingresso è 100 kHz. Le scale dei tempi per la visualizzazione si estendono da 1 ms fino a 60 m per la lunghezza di memoria di 512 Byte. Dell'immagine memorizzata è possibile come già accennato, avere una visualizzazione "espansa", 4 volte più grande, per cui è possibile disporre scale dei tempi che possono andare da 25 µs/divisione a 6 min/divisione.

Nelle due memorie di ripetizione dell'immagine (video ripetizione) possono essere memorizzate due curve che pos-

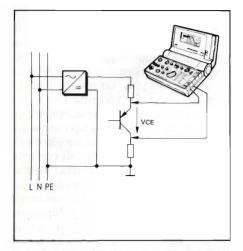


Fig. 3 - Con l'M 2050, la misura della tensione tra collettore e emettitore, essendo effettuata senza problemi di terra, non presenta difficoltà.

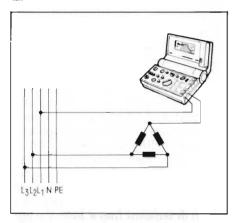
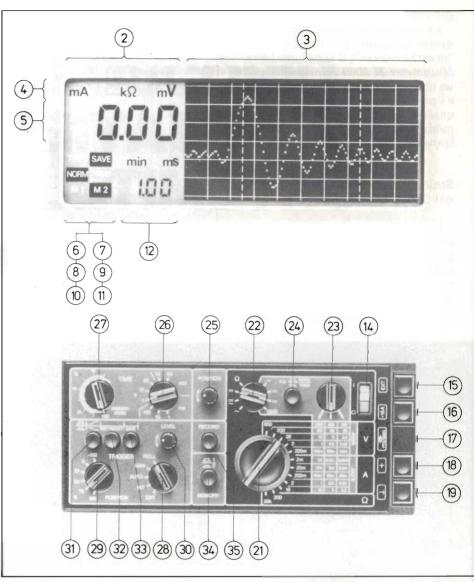



Fig. 4 - Il multimetro M 2050 permette di misurare la corrente di spunto di un motore trifase collegato a un circuito a triangolo anche se la misura deve essere effettuata sul conduttore "caldo".

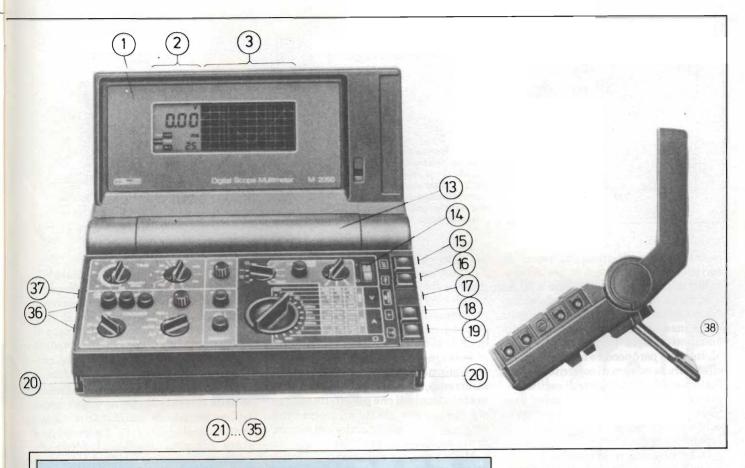
sono essere richiamate singolarmente sullo schermo, a piacere, dall'utilizzatore. Esiste inoltre la possibilità di comando di registratori di transitori, inclusi il pre- e il post-trigger.

L'apparecchio è munito anche di un'uscita analogica, separata galvanicamente, che permette di scrivere gli andamenti delle curve memorizzate mediante un plotter YT, nel caso in cui si volesse disporre di una documentazione scritta dei fenomeni studiati.

Il multimetro M 2050 soddisfa le norme di sicurezza VDE 0411/DIN 57 411 relative alle apparecchiatura di misura elettroniche. A differenza degli oscilloscopi e dei registratori di transitori convenzionali, il multimetro M 2050 rientra nella classe di sicurezza 2, il chè significa che questo apparecchio non richiede alcun collegamento di protezione. La tensione d'isolamento nominale è 650 V. Le caratteristiche tecniche più importanti dello strumento sono riassunte nella tabella 1.

Registrazione di tensioni a differente potenziale verso massa

Nel circuito di figura 2, rappresentativo di molti analoghi problemi di misura, occorre, per esempio, misurare la tensione VCE collettore-emettitore del transistore, e presentare sul display la curva della tensione.


Volendo effettuare questa misura con i convenzionali oscilloscopi (o con registratori di transitori) in classe di protezione 1 che prevede, come è noto, che il conduttore di protezione risulti collegato al morsetto del potenziale più basso (GND) e al contenitore dello strumento, le possibilità di misura sono due: misura mediante ingresso differenziale oppure applicazione dei segnali all'oscilloscopio mediante un trasformatore-separatore.

Nel primo caso è possibile avere misure falsate a causa dell'"anello a massa"; nel secondo caso, la tensione tra morsetto GND e terra non può superare i 50 V, in quanto diversamente, il contenitore dello strumento risulterebbe sotto tensione, con grande pericolo dell'utilizzatore

Con il DSM M 2050 questo tipo di misura non presenta problemi.

Indipendentemente dal fatto che l'apparecchio possa essere alimentato mediante accumulatore oppure collegato direttamente alla rete (tramite l'adattatore di rete NA4-6/400), è possibile collegare direttamente al medesimo la grandezza che si vuole misurare per il semplice fatto che non esiste in questo caso alcun collegamento degli ingressi con la terra di protezione (figura 3).

Non possono pertanto formarsi "anelli a massa", ne si corre alcun pericolo se si tocca, in fase di misura, il contenitore dello strumento almeno fino a quando la somma della tensione da misurare e la tensione verso massa non supererà il valore nominale della

- Unità di indicazione con video a cristalli liquidi (LCD)
- Indicazione digitale
- Video per la visualizzazione della forma d'onda
- Campo di indicazione per l'unità di misura; corrente, resistenza e tensione indicazione del multimetro digitale a 3¹/₂ cifre

- Campo di indicazione della funzione trigger (TRG'D)
 Campo di indicazione della funzione blocco memoria (SAVE)
- Indicazione normale: grandezza d'ingresso in funzione del tempo (NORM)
- Indicazione valore efficace in funzione del tempo (TRMS)
- 10 Visualizzazione contenuto memoria M 1
- Visualizzazione contenuto memoria M 2
- Campo di Indicazione del tempo di scansione per la visualizzazione della forma d'onda. Indicazione a 3 cifre con unità di misura del tempo.
- Coperchio vano batterie
- Interruttore I/O, inserito/disinserito
- Boccola/morsetto di collegamento per segnale di trigger esterno
- Boccola/morsetto di collegamento per la portata 10 A
- Fusibile per circuito di misura
- Boccola/morsetto di collegamento per tutte le portate (esclusa 10 A), polo alto potenziale (+)
- Boccola/morsetto di collegamento per tutte le portate, polo basso potenziale (--)
- Occhielli di ancoraggio tracolla
- Commutatore delle portate
- Commutatore del tipo di misura
- Commutatore per la commutazione di sensibilità della visualizzazione della forma d'on-
- Interruttore a tasto per la selezione di indicazione del valore normale o del valore efficace Potenziometro per il posizionamento della linea di zero (POSITION)
- Commutatore per i tempi di scansione
- Commutatore per la dilatazione dei tempi di scansione della visualizzazione della forma d'onda e per la scelta del segmento di curva da visualizzare Commutatore per selezione generatore di trigger Commutatore per posizione trigger Potenziometro di regolazione livello di trigger

- 30 -
- 31 32 -
- Interruttore a tasto per la selezione del fronte di trigger
 Tasto "SET/RESET" per trigger manuale e Single Sweep
 Interruttore a tasto "SAVE" per il blocco del contenuto memoria
 Interruttore a tasto per la commutazione tra memoria "M 1" e memoria "M 2"
- 35
- Tasto di comando dell'uscita analogica Boccole di collegamento "+" e "-" pe per l'uscita analogica 36
- Boccola di collegamento per alimentatore rete
- 38 Staffa di trasporto e inclinazione.

tensione di isolamento che è, come abbiamo visto, 650 V.

Registrazione di correnti

Siccome l'adattamento di ingresso dell'M 2050 è quello di un multimetro, potranno essere misurate e registrate anche correnti.

Con i normali oscilloscopi e registratori di transitori, per effettuare questa misura occorrono shunt esterni. Con il multimetro M 2050 è possibile misura-

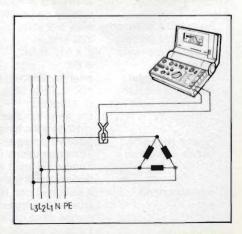


Fig. 5 - Un trasduttore di corrente a tenaglia fornito come accessorio del Digital Scope Multimeter, consente di effettuare senza problemi misure di correnti forti.

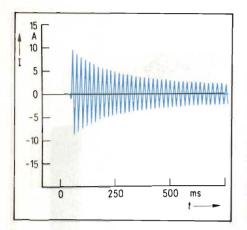
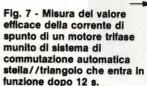




Fig. 6 - Corrente di spunto di un motore trifase ricavata dall'uscita analogica di un multimetro M 2050.

re e registrare direttamente valori di corrente fino a 10 A (20 A per 30 s) e valori di picco di corrente fino a 60 A.

In linea di massima, quando si vogliono misurare correnti lo strumento viene inserito nel conduttore che va a massa o a terra (conduttore freddo). Molte volte però occorre assolutamente effettuare la misura di corrente sul conduttore caldo. Con i normali oscilloscopi e registratori di transitori questi problemi di misura possono essere risolti soltanto ricorrendo ad amplificatoriseparatori aggiuntivi.

Questa situazione si verifica quando si vuole misurare la corrente di spunto di un motore trifase collegato in un circuito a triangolo; non è possibile in que-

sto caso come indica chiaramente la figura 4, inserire lo strumento nel conduttore di ritorno a massa. Il multimetro M 2050 può invece essere collegato direttamente, senza alcun pericolo, nel conduttore "caldo", almeno fino a quando la tensione su questo conduttore verso massa non sarà superiore alla tensione nominale di isolamento dello strumento, che ripetiamo, è 650 V. È evidente, quindi che per effettuare questa misura con questo strumento non sono richiesti amplificatori di separazione oppure shunt esterni.

Molte volte, per registrare correnti in stato oscillatorio con valore superiore a 10 A, occorre "prelevare" la corrente mediante apposito trasduttore di corrente a tenaglia (figura 5).

Il trasduttore dovrà essere dimensionato per poter lavorare fino a frequenze di 5 kHz. La misura della corrente mediante trasduttore presenta il vantaggio di non dover interrompere il conduttore. In figura 6 si può vedere l'oscillogramma relativo ad una corrente di spunto di un motore trifase.

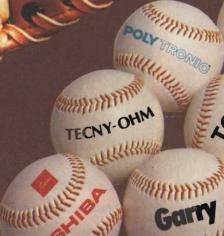
Nella figura 7 è indicato l'andamento della corrente di spunto di un motore trifase munito di commutazione automatica stella-triangolo. La corrente è stata misurata mediante il solito trasduttore di corrente a tenaglia. La posizione trigger si trova al 25%. Il passaggio dal funzionamento circuito a stella al funzionamento circuito a triangolo avviene dopo circa 13 secondi. Il picco di corrente ammonta a 260 A. Il valore della corrente, in condizioni di oscillazione, può essere letto sul multimetro.

Tabella 1 - Dati tecnici principali del Digital Scope Multimeter M 2050

Portate	220 mV, 2 V, 20 V, 200 V, 650 V
· ortaio	2 mA, 20 mA, 200 mA, 2 A, 10 A
della turni en di dibu	200 Ω. 20 kΩ
Base dei tempi	
base der tempi	0,25 ms, 1 ms, 2,5 ms, 10 ms, 25 ms, 100 ms
	0,25 s, 1 s, 2,5 s, 10 s, 15 s, 50 s,
	2,5 min, 10 min, 15 min, 60 min
THE RESERVE OF THE PARTY OF THE	per la lunghezza complessiva dello schermo
Display	a cristalli liquidi (LCD)
	Campo visione 118 mm x 42 mm
	Matrice a punti con 128 x 64 punti-immagine
	display per multimetro 3 ¹ / ₂ cifre
Frequenza scansione	
Frequenza limite	100 kHz
Capacità memoria	2 x 512 Byte
Risoluzione	8 Bit
Sorgente trigger	Interna, esterna, auto, manuale, scorrimento
	10004 7504 5004 0504 dalla lunghama dalla mana
Posizione trigger	100%, 75%, 50%, 25% delle lunghezza della memoria
	(Pretrigger)
	0% della lunghezza della memoria (Posttrigger)
	- 100% della lunghezza della memoria (Trigger-Delay)
Fianco trigger	positivo o negativo a scelta
Uscita analogica	Tensione uscita 03,2 V
	Tempo lettura 1 min oppure 10 min a scelta
	Separazione galvanica con 4 kV tensione di prova
Alimentazione	4 accumulatori NiCd secondo IEC KR 27/50
	Durata di funzionamento circa 8 h, durata della
	carica circa 14 h
	Funzionamento con rete mediante relativo adattatore
Peso	1,95 kg senza accumulatori
Dimensioni	257 mm x 169 mm x 88 mm (apparecchio chiuso).
	201 min x 100 min x 00 min (apparecento crituso).

Memorizzazione e documentazione

Le caratteristiche di memorizzazione dell'M 2050 sono analoghe a quelle di un registratore di transitori, e acquistano particolare significato quando si pensa che questa memorizzazione viene mantenuta anche ad apparecchio spento. Ciò significa che gli andamenti delle curve registrate "sul campo", potranno essere congelati mediante pressione di un pulsante, e conservati, quindi per mesi anche dopo lo spegnimento dell'apparecchio. Questi risultati di misure potranno quindi essere studiati e valutati con tutto comodo in laboratorio. Gli andamenti delle curve, per esempio quelli riportati nelle figure 6 e 7, vennero registrati nel luogo dove erano le macchine, indi messi in "frigorifero", e successivamente scritti mediante plotter su carta, servendosi dell'uscita analogica dello strumento.


REDIST

logia cente

A DIVISION OF GBC

Viale Matteotti, 66 20092 Cinisello Balsamo Milano - ITALIA Tel. 02/6123351 (5 linee) Telex: GBCMIL 330028

ROMA Via Boldini, 29 Telef. 06/6056143

MUKHHIR facility of

IN DIRETTA SUI SATELLITI

Ing. V. Parenti, E. Romano - RO.VE.R. snc - 1ª parte

Nel numero di giugno abbiamo presentato in collaborazione con i tecnici della RO.VE.R, le basi tecniche su cui si basa la ricezione TV via satellite e schemi di principio delle apparecchiature destinate a ricevere le immagini trasmesse Nella serie degli articoli che seguiranno, gli autori si propongono di fare il punto su questo argomento fornendo le ultime novità emergenti in questo settore.

al momento della stesura del libretto "DDS Diffusione Televisiva diretta da Satellite" (1), a quello delle presenti note è passato esattamente un anno e desideriamo fare un po' il punto della situazione, anche per rispondere in questo modo ai numerosi lettori che ci hanno scritto o telefonato per chiarimenti di carattere tecnico o maggiori informazioni generali sulla ricezione dai satelliti.

Abbiamo suddiviso queste note in IV sezioni:

I Situazione satelliti DDS/DBS

Antenne paraboliche Installate su un terrazzo dello stabilimento della RO.VE.R a Colombare di Sirmione.

Da sinistra a destra: Antenna IRTE da 2 m con illuminatore a basso rumore per ricezione 12 GHz (OT\$-2/EC\$-1); antenna RO.VE.R da 90 cm per ricezione DD\$/DB\$ a 12 MHz; antenna IRTE da 1,2 m per ricezione 12 GHz (OT\$-2) oppure 4 GHz (Gorizont 4) cambiando l'illuminatore; antenna MITEL da 2 m tipo Cassegrain per ricezione 4 GHz (Gorizont 4); antenna RO.VE.R da 1 m per ricezione 4 GHz (Gorizont 4), ed infine antenna da 1 m pr ricezione satellite MTEO\$AT-2.

L'ECS-1, il primo satellite per telecomunicazioni europeo, parte per lo spazio a cavallo del razzo vettore Ariane (foto da bollettino ESA - Agosto 1983).

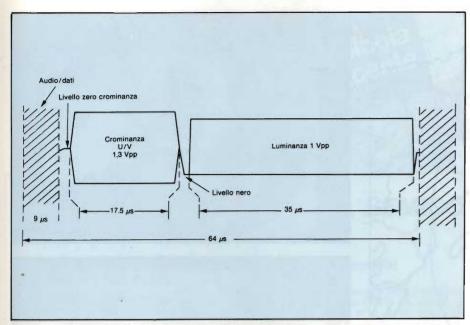


Fig. 1 - Forma d'onda di un segnale video con codifica MAC-C (non in scala).

Posizione del satellite italiano	19° ovest (- 19 W)
Banda canale radio (a — 3 dB)	B = 27 MHz
Rapporto portante/rumore prima del demodulatore (al 99% del mese peggior e ai limiti dell'area di servizio)	e C/N = 14 dB
Rapporto segnale/rumore video non pesato (al 99% del mese peggiore e al limite dell'area di servizio)	(S/N) _v = 33 dB
Fattore di merito della stazione ricevent da terra: per ricezione individuale per riceizone comunitaria	e G/T = 6 dB/°K G/T = 14 dB/°K
Antenna: angolo massimo di apertura de fascio a metà potenza	(Qo) _{max} = 2°
EIRP del satellite italiano sull'asse dell'antenna	(EIRP) _{max} = 64,3 dBW
Canalizzazione Regione 1 (n. 40 canali distanti 19,18 MHz)	11,7 - 12,5 GHz
Canalizzazione per l'Italia	12,1-12,5 GHz
Canali assegnati all'Italia (distanza 4 canali: 76,72 MHz)	(altahoza)
Can. 2	4 fo = 12.168,62 MHz
Can. 2	
Can. 3	
Can. 3	
Can. 4	The state of the s
Larghezza di banda assegnate all'Italia	
(e per ogni paese)	~ 400 MHz.

 $(11.7 \div 12,5 \text{ GHz})$

- II Situazione satelliti TV sperimentali e Telecomunicazione 10,9 ÷ 11,7 GHz.
- III Situazione satelliti TV a $3,7 \div 4,2$ GHz.
- IV Informazioni tecniche necessarie per un corretto dimensionamento della stazione ricevente.

Esse verranno pubblicate con continuità nei prossimi numeri della rivista.

Situazione satelliti DDS/DBS a 11,7 ÷ 12,5 GHz

Scadenza dei lanci

Al momento, negli ambienti degli "addetti ai lavori" - ESA (Ente Spazia-le Europeo), Aerospatiale etc. risulterebbe un ritardo nell'inizio dei lanci DBS: il Satellite della Germania occidentale TV-SAT-D e quello francese TD-F1 verrebbero posti in orbita rispettivamente alla fine '85 ed ai primi '86.

Questi due lanci si avvicinerebbero così al lancio del L-SAT (British Aerospace/Selenia), che porterà in orbita, fra le altre apparecchiature di Telecomunicazione, due "trasponders" DBS con un canale italiano ed uno europeo (utilizzabile anche dall'Italia). Si spera che la posta in orbita di questo L-SAT "Large Satellite" possa essere effettuata verso i primi mesi dell'86.

Nel 1986 l'Inghilterra avrà un suo satellite con due canali e l'Italia avrà nel 1988 un suo satellite con 3 canali.

Standard TV per i satelliti DBS

Il punto più importante è che-dopo le decisioni EBU (European Broadcasting Union) a Ginevra nel mese di Giugno del corrente anno, e se il CCIR deciderà per esso in questo senso (il che è molto probabile) avremo per tutta l'Europa, anzi per la Regione 1 (Europa, Africa, URSS), un nuovo standard di codifica TV per le emissioni DDS/DBS.

Questo standard che è denominato MAC-C a pacchetti, in cui MAC sta per Multiplex Analogue Component e C per il sistema di codifica numerico scelto per il suono, permetterà - utilizzando i TV appropriati - una qualità video realmente superiore nonchè la scelta per l'audio tra varie configurazioni di servizio; ad es.: otto canali monofonici ad alta qualità con tecnica "companding" oppure sei canali monofonici lineari ad alta qualità (con capacità di dati ausiliari).

Un profondo ed accurato studio degli

Da Archivio AOVEN

Fig. 2 - Area di copertura del fascio Italia. Il valore di attenuazione ai bordi è di 3 dB. La densità di flusso a terra (PFD) è di -103 dBW/m² all'epicentro.

Fig. 3 - Immagini dal satellite inglese OTS-2 cripto (scrambled).

attuali standard TV colore (PAL e Secam), sviluppati circa 20 anni fa sotto la necessità di avere un sistema compatibile con gli esistenti TV monocromatici, ha evidenziato - tramite anche delle lunghe esperienze con il satellite OTS - i difetti e gli svantaggi di questi standard. L'inglese IBA (Indipendent Broadcasting Authority) ha studiato e proposto ultimamente alla EBU il nuo-

vo standard per satellite denominato MAC-C.

In sintesi i problemi attuali delle trasmissioni TV colore nascono dal fatto che vengono trasmesse contemporaneamente le componenti di luminanza (Y) e quelle di crominanza (linee alternate contenenti U e V). Invece di utilizzare una sottoportante di crominanza il sistema MAC trasmette sequenzial-

mente - cioè una dopo l'altra nel tempole componenti di crominanza e di luminanza per mezzo di una tecnica di compressione nel tempo. In questo modo vengono eliminati completamente tutti gli effetti di interferenza ("cross") tra le componenti suddette.

Nel multiplex di tempo, il segnale video modula in frequenza (FM) la portante RF.

Nella codifica MAC-C le informazioni digitali audio/dati vengono inserite negli intervalli di linea del segnale video, sotto forma di una modulazione di fase (4PSK) della portante RF.

La Fig. 1 schematizza la forma d'onda video di un segnale con codifica MAC-C.

In ricezione detto sistema richiede un demodulatore di frequenza all'uscita del canale FI e successivamente un decodificatore dei segnali MAC che fornisce un video nelle componenti RGB, unitamente al sincronismo.

Per il pacchetto audio/dati, unitamente al demodulatore di fase, occorrerà un selettore per la scelta o dei canali audio associati all'immagine oppure dei dati etc.

Ciò non significa che non verranno eventualmente effettuate delle tra-

Tabella 2 - Dati tecnici essenziali sul satellite OTS-2.

- Posizione orbitale
- Canali
- Polarizzazione
- EIRP massimo
- Larghezza di banda utile
- Numero canali TV
- Larghezza di banda trasmessa
 - per ogni canale TV
 - Frequenza del fascio
 - di identificazione
- Deviazione
- Pre-enfasi
 - Valore di energia dispersa

- 5°E_4 e 4
- Lineare (verticale od orizzontale) 48,6 dBW Max. (Spotbeam) 120 MHz (11580 ÷ 11700)
- 2
- 27 MHz
- 11.786 GHz
- 18.0 MHz/V alla frequenza di transizione della pre-enfasi
- CCIR REC 405-1
- 2 MHz deviazione picco-picco con forme d'onda triangolare a 25 Hz.

Toshiba

SHIBA SEMICONDUTTORI

FOTOACCOPPIATORI È FOTO-INTERRUTTORI

La vasta gamma di foto-accoppiatori TOSHIBA comprende i tipi con uscita a transistore-darlington-tiristore-triac e Ic. Sono fornibili con varie tensioni di isolamento, diversi CTR e potenze.

MEMORIE

Le memorie TOSHIBA offrono sicuramente un punto d'appoggio per l'utilizzatore con esigenze spinte di tecnologia. Per sottolineare quanto accennato, il riferimento alle RAM STATICHE CMOS 64K è doveroso. Alcuni accenni sulle altre famiglie:

RAM DINAMICHE - tagli da 16K a 64K

(prossima la 256K). RAM STATICHE NMOS - tagli da 4K a 16K (la conosciuta TMM 2016) con la 64K già in vista

RAM STATICHE CMOS - tagli da 1K a 64K (TMN 5565PL15).

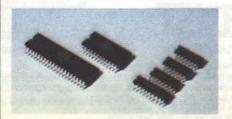
EPROM - disponibile la 64K con tempi di accesso di 200 ns e di 250 ns.

MICROPROCESSORI

La TOSHIBA dispone di tutto il kit Z80 a 4MHz in tecnologia CMOS. Da notare anche il kit 8085 - 8035 - 8039 - 8255 - 8243 - 8279 -8051 - 8031 di cui alcune funzioni già in CMOS oltre che NMOS.

TRANSISTORI

Dispositivi di particolare rilievo nella vasta gamma TOSHIBA sono: i GTR (Giant Transistor) nei contenitori To3 - flat base moduli con Vced sino a 900V e Ic sino a 600A, particolarmente adatti per controllo motori, macchine utensili a controllo numerico ecc; FET e POWER MOS FET.


OPTOELETTRONICA

I dispositivi optoelettronici di TOSHIBA si dividono in due gruppi: il primo consiste in dispositivi, quali i LED e i DISPLAYS, che convertono energia elettrica in luce tramite l'impiego di GaP - GaAsp - GaAs come materiale di base.

Il secondo gruppo comprende i fotosensitivi che tramutano la luce in energia elettrica ed include foto-transistor, foto-diodi e foto-SCR.

HS C2 MOS

Di rilievo la Famiglia 74HC oltre alla ormai nota 4000 standard.

LED

La TOSHIBA offre diversi tipi di led: tondo, rettangolare, quadrato, triangolare, bicolore, convesso, con intensità luminosa da 0,3 mc a 200 mc.

DISPLAYS

La gamma di displays TOSHIBA comprende dispositivi a sette segmenti da 1-2-4 digit, a sedici segmenti alfanumerici e i bar point nei colori di base: rosso, verde, giallo, arancio. Tutti i tipi sono ad alta efficenza.

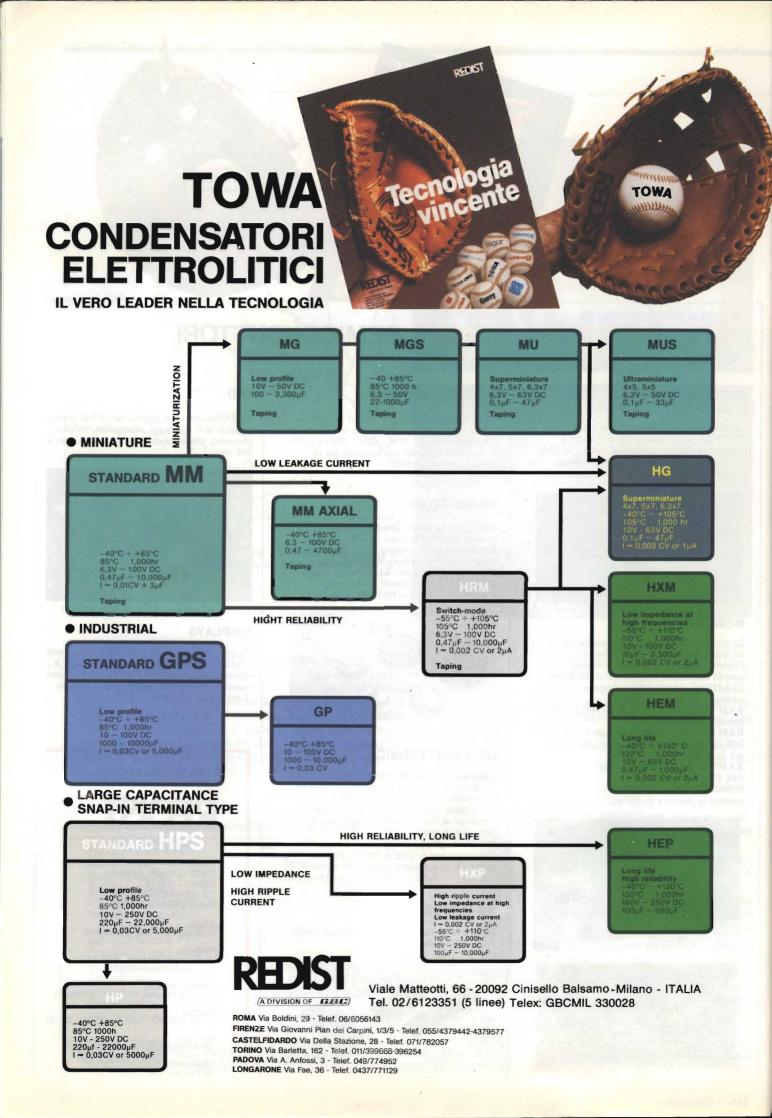
(A DIVISION OF GHC)

Viale Matteotti, 66 20092 Cinisello Balsamo Milano - ITALIA Tel. 02/6123351 (5 linee) Telex: GBCMIL 330028

ROMA Via Boldini, 29 - Telef. 06/6056143

FIRENZE

Via Giovanni Pian dei Carpini, 1/3/5 Telef. 055/4379442-4379577


CASTELFIDARDO

Via Della Stazione, 28 - Telef. 071/782057 TORINO

Via Barletta, 162 - Telef, 011/399668-396254

PADOVA Via A. Anfossi, 3 - Telef. 049/774952

LONGARONE Via Fae, 36 - Telef. 0437/771129

smissioni - ad es. nel periodo iniziale - anche con standard CCIR-PAL o CCIR-SECAM. Questo tipo di decisione è legato a molteplici fattori industriali (presenza sul mercato di nuovi TV, etc.), politico-economico (scambi di programmi, diritti d'autore, etc.) ed altri.

Se tutto ciò andrà regolarmente in porto, avremo un unico standard per tutta la Regione 1 con un salto qualitativo veramente rilevante come tutti gli specialisti hanno potuto rendersi conto di persona nell'ultimo Salone Internazionale di TV tenutosi a Montreux a cavallo tra maggio e giugno del 1983.

Il punto fondamentale è che il satellite, nonchè tutta la parte del ricevitore DBS, fino al demodulatore è trasparente al tipo di codifica utilizzato (Pal, Secam, Mac-C), il che significa in altre parole, che tutto il lavoro di studio effettuato dalle varie ditte a vari livelli che si interessano di questa imminente nuova "via" di ricezione TV è pienamente valido ed utilizzabile sino al demodulatore.

Quando il tutto avrà una veste ufficiale e completamente definito in tutti i dettagli, potremo tornare ampiamente su questo argomento attingendo alle fonti ufficiali.

Accenniamo solamente che il sistema di trasmissione TV da Satellite con codifica MAC-C a pacchetti potrà essere anche ricevuto da normali TV con

Fig. 4 - Immagini dal satellite inglese OTS-2 in chiaro (descrambled).

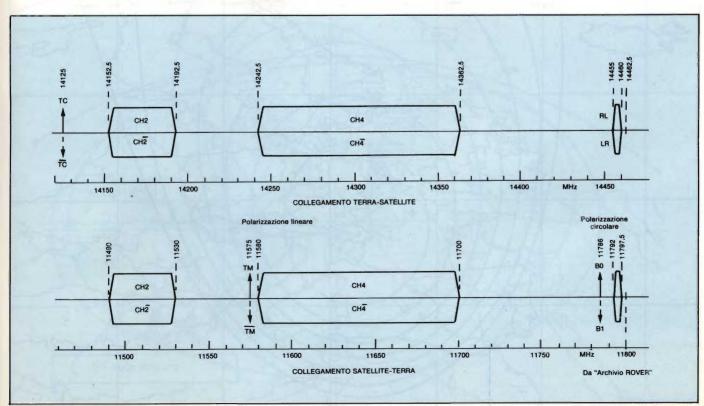


Fig. 5 - Plano delle frequenze del satellite OTS-2. Le bande al di sopra e al di sotto di clascun asse orizzontale hanno polarizzazioni ortogonali tra

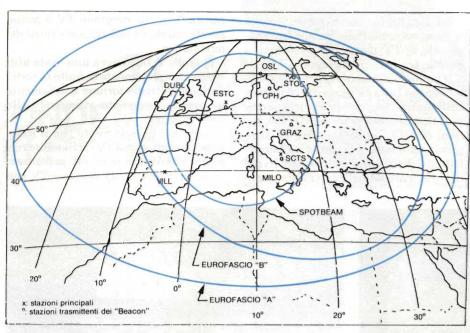


Fig. 6 - Aree di copertura delle antenne trasmittenti dell'OTS-2.

Da "Archivio ROVER"

standard PAL e si perderanno tutte le multiple informazioni disponibili nel pacchetto numerico.

La qualità risulterà non più quella originale ma eguale (o leggermente inferiore) a quella attuale PAL.

Risultati migliori - dal punto di vista della qualità immagine - si potranno avere con TV dotati da presa di "peritelevisione".

Ricevitore per Satellite DBS mod. ROVER-SAT 40

La RO.VE.R. ha presentato nel maggio c.a. - in occasione dell'INTEL '83 - un prototipo di laboratorio di ricevitore DBS nella banda 11,7 ÷ 12,5 GHz, reso operativo mediante un simulatore interno a microonde.

La descrizione completa di questo prototipo esula dallo spirito dalle presenti note ed è stata trattata come un articolo separato che apparirà prossimamente su questa Rivista.

Situazione satelliti sperimentali e di Telecomunicazioni (non DDS/DBS) a 10,9 ÷ 11,7 GHz

Informazioni introduttive

Nel mentre i satelliti TV Broadcasting DDB/DBS irradieranno potenze EIRP dell'ordine dei 62 ÷ 64 dBw, quelli detti di Telecomunicazione, operanti attualmente, lavorano con potenze notevolmente inferiori dell'ordine di 46-47 dBw o meno (22 ÷ 29 dBW).

Tenendo presente che 20 dB in poten-

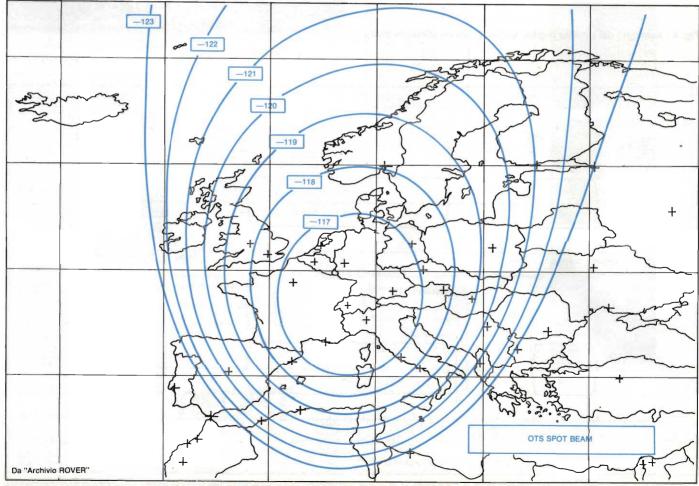


Fig. 7 - Densità di flusso a terra (PFD) dello SPOT BEAM OTS-2. Notare il "borosite" puntato sulla Svizzera.

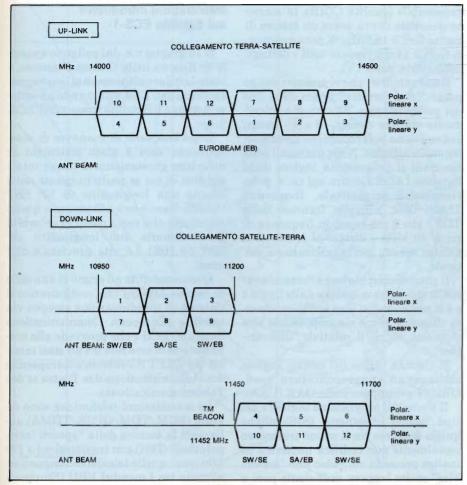
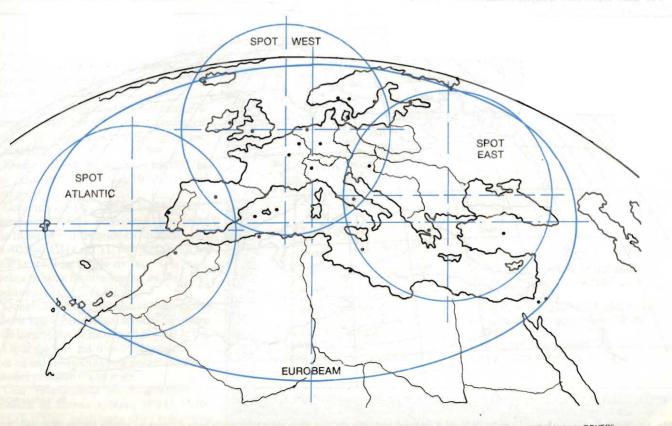


Fig. 8 - Plano di frequenze ECS. Da notare i due raggruppamenti nella parte bassa ed in quella alta della banda.

za significa 100 volte è evidente come, a parte ogni altra considerazione, si tratta di operare con una fascia di livelli notevolmente inferiori ai -75 dBm previsti per quelli "diretti" (DBS/DDS). (Vedi citato fascicolo RO.VE.R.).


Oltre per questa fondamentale differenza, essi nella quasi totalità, utilizzano delle tecniche cripto mediante l'impiego di uno "scrambler" (codificatore) in partenza (stazione di terra dell'uplink) ed un "descrambler" (decodificatore) in ricezione, presso ogni stazione di terra ricevente.

Per ricevere questi ed altri satelliti occorre presentare una domanda *moti*vata alla Direzione Centrale Servizi Radio Elettrici del Ministero P.T.

L'ufficio competente procederà ad autorizzare o no - a suo insindacabile giudizio - l'acquisto di un "descrambler" ed a fissare in modo inequivocabile "l'utilizzo" delle informazioni in arrivo.

Questa rigida regolamentazione è controllata dall'Eutelsat che è in pratica un organismo super-nazionale tutelante gli interessi dei servizi PP.TT. nello spirito di accordi internazionali già esistenti.

Fig. 9 - Zona di copertura delle antenne. Il fascio EUROBEAM presenta nel suo "borosite" una densità di flusso (PFD) inferiore di circa 6 dB dello SPOT WEST data la ERIP inferiore a causa dell'antenna a larga banda.

Informazioni generali sul Satellite OTS-2

Il più noto di questi satelliti - nell'area Europea - è senz'altro il glorioso satellite sperimentale OTS 2 (Orbital Test Satellite), lanciato nel maggio '78 a cura dell'ESA, ancora operativo dopo aver ampiamente superato i 3 anni previsti di regolare servizio nel programma spaziale ESA.

Esso trovavasi originariamente in posizione orbitale 10° Est (cioè + 10E) ed è stato successivamente spostato a 5° Est (+5E) per far posto all'ECS-1 (Vedi paragrafo seguente).

Riservandoci di vedere nella parte IV di queste note il significato dei vari numeri (-117 ... -123) relativi alle isolinee della densità di flusso a terra e come calcolare l'antenna necessaria e la cifra di rumore massima del ricevitore della stazione, possiamo solo anticipare che, per ricevere l'OTS, è necessario utilizzare una parabola del diametro di 2÷3 m ed una unità esterna avente una cifra di rumore intorno a 3,5/3,7 dB.

Curando bene l'angolo l'elevazione mediante un apposito inclinometro (avente minimo una risoluzione di 0,5°), il puntamento non è troppo critico utilizzando antenne non superiori di 3 m. di diametro, che a queste frequenze presentano un'apertura di circa 0,6° (angolo per metà potenza).

Per una ricezione qualitativamente

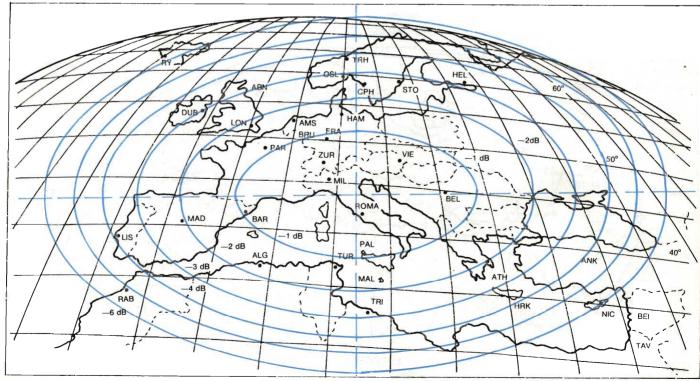
impeccabile (qualità CCIR), la stazione ricevente dovrà avere un fattore di merito G/T≥18,5 dB/°K per un rapporto C/N≥14 dB (vedere tutti i dettagli nella citata parte IV).

Detto satellite - che si presume venga posto "fuori servizio" prima della fine del presente anno '83 - irradia attualmente sui due canali - 4 e 4 - aventi cadauno una polarizzazione lineare ortogonale all'altro. Nelle ore serali sono ricevibili il programma inglese della Satellite Ltd di Londra sul ca. 4, polarizzazione orizzontale, frequenza 11,650 GHz, e quello francese della TDF - che è più basso in frequenza di circa 40 MHz - diretto al Nord ed al Centro Africa, con polarizzazione verticale.

Il programma inglese è "scrambled" sia in video che in audio e dalle figure 3 e 4 si può avere un'idea sufficientemente chiara di come sia impossibile una ricezione senza il relativo "descrambler".

Il sistema cripto del canale inglese utilizza un'apparecchiatura mod. ORION sviluppato della OAK (USA).

Il suono del programma inglese è del tipo "sound in syncro" (SIS); anche quello francese ha il suono trasmesso ugualmente con codifica numerica ed inoltre presenta sul video uno "scrambler" molto leggero, sufficiente però a rendere impossibile una regolare ricezione.


Informazioni introduttive sul Satellite ECS-1

Il 16 giugno u.s. dal poligono spaziale di Kourou nella Guinea Francese, è stato lanciato ultimamente con successo a cura dell'ESA utilizzando un vettore Arianne il Satellite *riserva* dell'ECS-

Dopo una serie di manovre di assestamento esso è stato sistemato in un'orbita geostazionaria (come tutti i satelliti di cui si parla in queste note) avente una longitudine di 13° EST (+13E). Esso verrà affiancato a quello principale che verrà posto in un'orbita geostazionaria con longitudine 10° EST (+10E). La vita prevista è di 7 anni.

Questo satellite è il primo di una serie di cinque satelliti che costituiranno il sistema di comunicazione europeo via satellite (European Communications Satellite) ECS e che provvede alla realizzazione di una rete tra gli stati membri del CEPT (Conference Europèenne des Administrations des Postes et des Telecommunications).

Le trasmissioni telefoniche sono digitali (PCM/TDM/QPSK/TDMA) utilizzanti la tecnica della "speech interpolation" (DSI) con trasmissioni a 120 Mbt/sec.; quelle televisive vengono realizzate tra i membri EBU (European Broadcasting Union) utilizzando nel caso dell'ECS-1 il satellite di riserva.

Da "Archivio ROVER

Fig. 10 - Zona di copertura multi-servizi. In questo disegno semplificato non sono state indicate le isole Azzorre e Canarie servite da questo fascio.

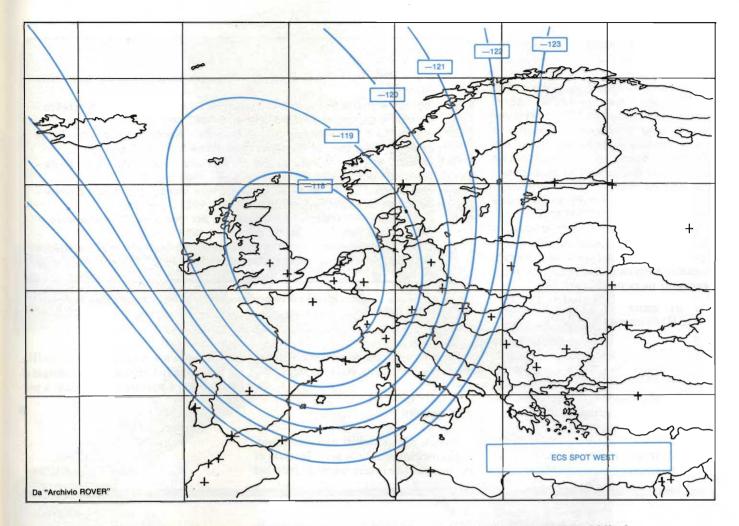


Fig. 11 - Densità di flusso a terra (PFD) per lo SPOT WEST del satellite ECS. Notare il "borosite" puntato sul Mare del Nord.

Per maggiori dettagli sull'utilizzo di questo satellite per ulteriori funzioni di collegamento in ambito nazionale ed europeo per le trasmissioni TV rimandiamo alla bibliografia.

È da tener presente che nel caso d'avaria del satellite principale, i canali di quello di riserva vengono utilizzati d'autorità.

Esso inizierà ad operare all'incirca nel primo trimestre del 1984 - in fase preoperativa.

Con riferimento ai dati tecnici qui di seguito riportati possiamo precisare che la banda di frequenza operativa va da 10,950 GHz ad 11,700 GHz cioè ha una larghezza totale di 750 MHz, suddivisa in una banda bassa ed una alta cadauna larga 250 MHz.

Questi 500 MHz operativi sono divisi a loro volta in 6 canali aventi cadauno una larghezza di banda di 83,333 MHz.

Ogni canale ha due "transponders" con egual frequenza ma polarizzazioni lineari ortogonali (x e y).

Con riferimento ai diagrammi di densità di flusso a terra (PFD) dello SPOT WEST è evidente che l'epicentro

Tabella 3 - Dati tecnici essenziali sul satellite ECS-1. Potenza EIRP European 34,8 dBW (minimo) Potenza EIRP **EIR SPOT WEST** 40,8 dBW (minimo) Atlantic Larghezza di banda trasmessa per ogni canale (a 0,3 dB) 36 MHz Dati attuali ('83) - EIRP 45 dBW (spot WEST) - Deviazione 18.0 MHz alla frequenza della transizione di pre-enfasi **CCIR REC. 405-1** Pre-enfasi massimo 4 MHz picco-picco con - Energia dispersa forma d'onda triangolare 25 Hz Posizione orbitale 12 di cui 8 assegnati - Canali TV Frequenza del fascio di 11451.091 MHz rilevamento

("borosite") è centrato sul Mare del Nord e non (come l'OTS-2) sulla Svizzera.

Ogesto puntamento ci pone in una condizione di leggero svantaggio rispetto l'OTS-2 e nel Nord Italia ci si può aspettare un livello da 3 a 4,6 dB inferiore rispetto a quello ottenuto con l'OTS-2. Sembrerebbe possibile un aumento (entro la fine '84) della potenza EIRP da 45 a 46 dBW il che ridurrebbe leggermente (di circa 1 dB) il dislivello ECS rispetto l'OTS-2.

Dei 12 "transponders" del satellite ECS-1 (i canali del satellite principale e quello di riserva sono esattamente uguali), 8 operano con canali TV per le seguenti nazioni:

seguenti nazioni.	
1 (I) Italia 7 (CH) Svizzera)
2 — 8 —	banda bassa
3 (NL) Olanda	
9 (B) Belgio	1
4 (F) Francia	
10 (D) Germania Occ.	P-118-1-
5 (D) Germania Occ.	1 1
11 -	banda alta
6 (UK) Regno Unito	
12 (UK) Regno Unito	

88

BIBLIOGRAFIA

- Ing. V. Parenti e E. Romano DBS Diffusione televisiva diretta da satellite RO.VE.R
- Ing. V. Parenti, E. Romano e L. Cascianini Le basi della TV via satellite -Selezione di Tecniche Elettroniche N. 6-1983 pag. 22
- Ing. V. Parenti, E. Romano e L. Cascianini Sistemi di ricezione TV da satellite - Selezione di Tecniche Elettroniche N. 6-1983, pag. 30
- Redazione L'unità esterna per la ricezione TV da satellite è pronta -Selezione di Tecniche Elettroniche N. 6 - 1983 pag. 26
- Redazione La TV da satellite giapponese impiegherà l'audio digitale -Selezione di Tecniche Elettroniche N. 6 - 1983 - pag. 28.
- L. Cascianini P. Harrop Unità esterna per ricezione TV da satellite -Selezione di Tecniche Elettroniche - N. 4 1982.
- 7) L. Cascianini, P. Lesartre 1984: solo Germania e Francia avranno il satellite TV Selezione di Tecniche Elettroniche N. 4 1982.

Una bibliografia più completa su questo e su altri argomenti che verranno trattati sarà fornita al termine di questa serie di articoli.

Per maggior chiarezza vedere il piano di frequenza riportato in *figura 8*. V operante a 4/6 GHz ed a 11/14 GHz. Su questo ed altri satelliti Intelsat ritorneremo a parlare nella seconda par-

Altri satelliti

Tra gli altri satelliti di Telecomunicazioni citiamo solo la serie Intelsat di cui uno dei più interessanti è l'Intelsat

TV via satellite: chi si è prenotato

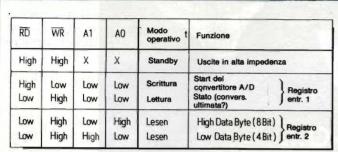
a TV via satellite avanza anche in Europa. Esistono diversi progetti, alcuni dei quali sono di tipo sovranazionale gestiti dall'Esa (European space agency) e altri sono invece legati alla libera iniziativa dei singoli governi. Lo L-Sat (Large satellite) appartiene al primo gruppo: diventerà operativo nel 1986 e prevede di equipaggiare un satellite con un paio di trasmettitori Dbs uno dei quali, soprannominato Olympus 1, sarà destinato in permanenza all'Italia che è uno dei paesi privo di piani per il lancio di un satellite nazionale. Teoricamente questo tipo di satellite sarà ricevibile con antenne di piccolo diametro (90 cm - 1 m). Per assistere al boom dei satelliti a diffusione diretta bisognerà, però, aspettare il 1985-86; nel frattempo, grazie ad una serie di satelliti Ecs, il primo dei quali è stato lanciato il 16 giugno scorso, l'Esa metterà a disposizione delle nazioni aderenti una moltitudine di trasmettitori ricevibili a terra con antenne da 3 a 4 metri: Austria, Belgio, Francia, Germania Ovest, Italia, Lussemburgo, Olanda e Svizzera divideranno la stessa posizione orbitale; Islanda, Irlanda, Portogallo, Spagna e Regno Unito ne divideranno un'altra e infine i piccoli Andorra, Liechtenstein, Monaco, San Marino e Vaticano un'altra ancora. I satelliti nazionali invece dovranno attendere un po' di più per andare in orbita e questo è dovuto alla disponibilità di Ariane, ovvero il razzo europeo che deve trasportarii sull'orbita geostazionaria a circa 36 mila chilometri da terra. I viaggi di Ariane, per il momento, sono così prenotati: nel 1985 porterà nello spazio il satellite tedesco Tv Sat, seguito nello stesso anno da quello francese Tvf 1; nel 1986 il secondo satellite francese dovrebbe essere seguito da due inglesi e da uno svedese; quello del Lussemburgo è programmato per il 1987 e fra l'87 e l'88 dovrebbero andare in orbita i satelliti dei paesi nordici.

Il mercato europeo dell'elettronica di consumo

D a 24 miliardi di dollari, nel 1982, il valore del mercato europeo dell'elettronica di consumo aumenterà a 28,4 miliardi di dollari nel 1986. I dati si riferiscono alle vendite al dettaglio e sono a valori costanti 1982. Sono dati estrapolati da uno studio della Mackintosh Consultants di Londra che proietta la quota dell'Italia a 3,3 miliardi nel 1986 (contro 2,7 miliardi nel 1982) mentre il mercato numero uno sarà il tedesco con 5,6 miliardi (4,5). Alla formazione del valore complessivo la TVC avrà ancora un ruolo trainante con 8,9 miliardi di dollari (contro 8,3), seguita dai videoregistratori (5,8 contro 4,3) e dagli impianti hi-fi (4,5 contro 3,8).

(A DIVISION OF GBC

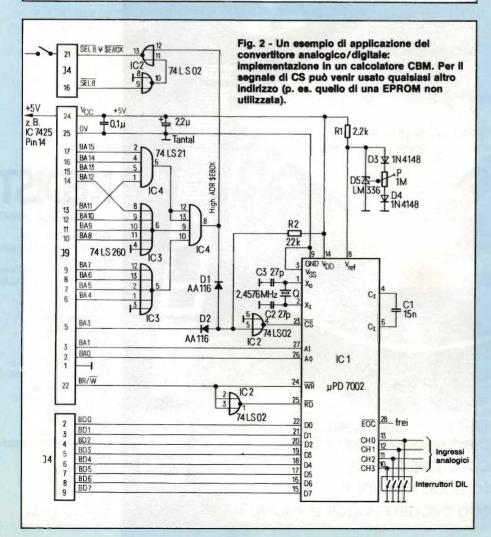
Viale Matteotti, 66 20092 Cinisello Balsamo Milano - ITALIA Tel. 02/6123351 (5 linee) Telex: GBCMIL 330028


Via Giovanni Pian dei Carpini, 1/3/5 Telef. 055/4379442-4379577

Via Della Stazione, 28 Telef. 071/782057

Via Fae, 36 Telef. 0437/771129

CONVERTITORE A/D


A. Schön e Ing. E. De Lorenzo, ASB.

Condizione: Chip Select a livello basso

X = qualsiasi valore

Fig. 1 - Le singole funzioni del µPD-7002 vengono realizzate tramite i registri del componente.

i tratta del convertitore μPD-7002 della NEC. Prodotto in tecnologia CMOS, questo componente richiede un'unica alimentazione di + 5 V con una dissipazione di potenza minima (circa 20 mW). La proprietà che maggiormente lo distingue dagli altri convertitori A/D, è la presenza di uscite Tri-State, che gli aggiudicano in ultima analisi la possibilità di allaccio diretto ai bus dei microprocessori.

12 o 8 Bit... a scelta

I valori d'entrata analogici possono venir convertiti facoltativamente con una risoluzione di 12 o 8 Bit: con la risoluzione maggiore aumenta proporzionalmente il tempo di conversione. Uno dei pochi punti a svantaggio del 7002 è per l'appunto la sua velocità .Il tempo di conversione medio di 4 ms a 8 Bit e di 10 ms a 12 Bit delimita in modo preciso il campo delle applicazioni a meno che non si voglia impiegare ulteriore hardware (p. es. circuiti di sample & hold o simili). Per il resto il componente mostra delle prestazioni decisamente apprezzabili. La parte analogica presenta quattro entrate pilotabili separatamente da software. Possono venir elaborate tensioni da 0 V a + 2,5 V. L'impedenza d'entrata è di $1000 \,\mathrm{M}\Omega$ e permette un ampio campo d'applicazioni.

Per l'uso del convertitore è necessaria solamente una tensione di referenza esterna (mass. 2,5 V) che determina anche la massima tensione d'entrata.

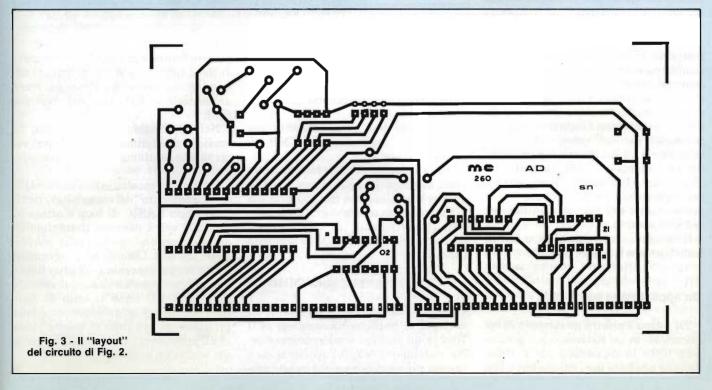
Pilotaggio tramite i registri

Verso il processore il μ PD 7002 è collegato con le seguenti linee: CS (chip select), gli indirizzi A0 ed A1, i dati D0...D7, e le linee di lettura e scrittura RD (read) e WR (write). Con A0 ed A1 il componente occupa quattro indirizzi dei quali però solo i primi tre hanno

SUL BUS DEI MICROPROCESSORI

Esistono parecchie pubblicazioni sull'impiego di convertitori analogico/digitali con i microprocessori.

Le soluzioni proposte finora presentano un difetto comune: i convertitori addottati non erano concepiti per l'uso con i microprocessori e rendevano necessario un considerevole dispendio nel lavoro di progettazione sia software che hardware. Questo articolo descrive un componente che venne concepito espressamente per applicazioni con i microprocessori..


importanza. Con questi tre indirizzi vengono selezionati tre registri e precisamente un registro d'entrata e due d'uscita. Il registro d'entrata (indirizzo base) può venir letto (WR a livello basso) e scritto (RD a livello basso), mentre per i due registri d'uscita ha senso solamente la lettura del contenuto (figura 1).

Il processo di conversione analogico-/digitale viene iniziato scrivendo una parola da 8 Bit nel registro d'entrata. Questa parola contiene l'indirizzo del dispositivo di misura che fornisce il valore analogico d'ingresso (canale: CH0...CH3) ed il modo d'operazione del convertitore (risoluzione di 8 o 12 Bit). I Bit 0 ed 1 definiscono l'indirizzo del dispositivo di misura mentre il Bit 3 determina la risoluzione (di 12 Bit: Bit 3 = 1, di 8 Bit: Bit 3 = 0).

Tutti gli altri Bit sono zero. Per esempio una conversione del valore analogico fornito da un dispositivo di misura al "canale" 2 (CH 2) verrà inizializzata scrivendo il valore 10 (esadecimale 0A) nell'apposito registro.

Appena scritto il dato nel registro, il

convertitore inizia il processo di conversione e porta nel medesimo registro il Bit 7 a livello alto. A conversione ultimata, questo Bit viene "resettato" a livello basso. La fine della conversione analogico/digitale può venir riconosciuta anche via hardware: in questo caso il segnale EOC (End Of Conversion) al pin 28 va da livello alto a basso. La lettura del registro d'entrata ci informa perciò in ogni momento dello stato del convertitore. Invece del Bit 7 del registro d'entrata si può anche verificare il Bit 6 (BUSY = occupato), che si

GENNAIO - 1984

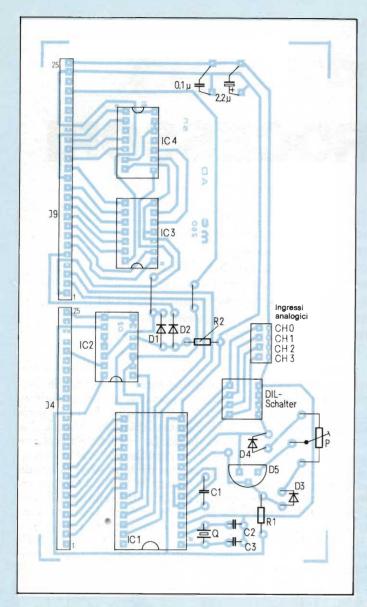


Fig. 4 - La disposizione dei componenti sulla scheda. Data l'elevata sensibilità delle entrate analogiche, è opportuno cortocircuitare quelle non utilizzate: a questo servono gli interruttori DIL, che possono essere omessi su tutte le entrate sono in funzione.

```
10
      rem indirizzi
 20
      a0=59400: a1=a0+1: a2=a0+2
      mo=8: rem conversione-12-bit
 40
      sp#=" ": rem quattro spazi
      c1$=chr$(157): rem cursore a sinistra
      cos=chrs(145): rem cursore in alto
 60
      cr$=chr$(29) : rem cursore a destra
      bs$=chr$(147); rem cancella lo schermo
 80
 90
      print ba
      for ms=0 to 3
     poke a0.mo+ms
 140
160
     rem misura dei valori
     if (peek (a0) and 128) > 0 then 210
     ri=peek (ai) :r2=peek (ab)
     r1=r1*16 :r2=r2/16
     rem visualizzazione sullo schermo
330 print rí; cl$; sp$; co$
350 return
```

Fig. 5 - Un piccolo programma in BASIC, che visualizza i valori di misura sul terminale video.

comporta in modo opposto al Bit 7 e cambia da livello basso a quello alto. A conversione ultimata si può leggere il risultato della conversione nei due registri d'uscita. In caso di conversione da 8 Bit, il registro con l'indirizzo base + 1 conterrà il risultato completo; nella risoluzione a 12 Bit questo registro conterrà solamente gli 8 Bit più significativi: gli altri 4 Bit vengono memorizzati nel registro con l'indirizzo base + 2, e precisamente nei Bit più significativi (gli altri sono 0).

Il massimo valore analogico in entrata fornisce il valore di 4095.

Un'applicazione per il CBM

La figura 2 mostra un esempio di applicazione in un sistema con il processore 6502: la decodifica per il Chip-Select è adattata per i calcolatori CMB

della serie 3000, l'indirizzo base del convertitore è E808 (esadecimale). Viene usato l'indirizzo A3 per far funzionare il componente assieme al port di espansione.

La scheda può venire inserita nei connettori di espansione del CMB (figura 3 e figura 4).

Per la generazione del clock possono venir usati anche altri quarzi con frequenze d'oscillazione fra 100 kHz e 3 MHz. In questo caso bisogna dimensionare propriamente il condensatore d'integrazione rispettando la seguente condizione:

C1 (μ F) > 0,029/f clock (MHz)

Questo è naturalmente solamente un esempio di implementazione del µPD 7002 in un sistema a microprocessore. Nei sistemi con lo Z80, l'applicazione è ancora più semplice poichè questo pro-

cessore fornisce già due linee separate di Read (lettura) e Write (scrittura) eliminando la necessità di dover generare un segnale di RD come nel caso del 6502.

Nell'applicazione qui descritta, la tensione di riferimento di 2,5 V può venir tarata esattamente con il potenziometro.

La figura 5 mostra infine un esempio di "trattamento" del convertitore con il linguaggio BASIC. Il loop d'attesa in riga 100 verrà percorso normalmente due volte prima della fine della conversione (12 Bit). Usando un programma il linguaggio macchina - di gran lunga più veloce - conviene usare il segnale EOC (Pin 28) come criterio di fineconversione e p. es. generare con quello un interrupt evitando in questo modo che il processore passi la maggior parte del tempo ad aspettare.

INTERRUTTORE STATICO DI POTENZA DA 500 A

Collegando in parallelo 50 transistori SIPMOS BUZ 33 (Siemens) è possibile realizzare un interruttore statico di potenza che può aprire oppure chiudere un circuito percorso da una corrente con intensità fino a 500 A (figura 1).

In questa applicazione appaiono in tutta la loro "grandezza" le caratteristiche dei transistori SIPMOS (Siemens) e cioè: bassa potenza richiesta per il loro pilotaggio, assenza del fenomeno della seconda rottura (second breakdown), coefficiente di temperatura positivo assunto dal chip del transistore quando questo si trova in conduzione. La tensione di bloccaggio in questo caso ammonta a 70 V.

È noto che i transistori SIPMOS sono transistori ad effetto di campo MOS (MOSFET) con canale di tipo N. La conducibilità di un transistore SIP-MOS sarà pertanto determinata dalla tensione applicata tra gate e source: la corrente di pilotaggio è richiesta soltanto per la carica della capacità di ingresso - sempre presente - del transistore fino a quando questa capacità avrà assunto il valore della tensione di pilotaggio. La "potenza di pilotaggio" sarà pertanto costituita da questo processo di carica, svolto dal circuito di pilotaggio nonchè dal numero dei cicli di carica richiesti da questa capacità di



Fig. 1 - Schema dell'interruttore statico di potenza da 500 A realizzato con 50 SIPMOS BUZ 23.

ingresso del SIPMOS. Gli effetti dell'induttanza dei collegamenti del circuito di pilotaggio vengono neutralizzati aumentando la resistenza interna del circuito di pilotaggio (resistori da $100~\Omega$ in serie ai terminali di gate dei BUZ 23).

Si deve tener presente che in questo caso, dovendosi collegare in parallelo 50 transistori, anche le rispettive capacità d'ingresso risulteranno collegate in parallelo, per cui il tempo per la loro completa ricarica sarà più lungo. Questo, oltre a richiedere una maggiore po-

tenza di pilotaggio, significherà che il tempo di commutazione (il tempo cioè necessario perchè il transistore entri in conduzione dopo che è stato applicato l'impulso di comando), risulterà più lungo. Pensandoci bene questo effetto collaterale non è però del tutto indesiderabile, in quanto se la tensione di comando aumenta lentamente, ciò farà sì che tutti i transistori collegati in parallelo facciano in tempo ad entrare in conduzione. Contemporaneamente, il resistore in serie al gate a cui abbiamo accennato prima, darà luogo, grazie alla capacità di Miller, ad una reazione negativa dall'uscita del transistore (drain) all'ingresso (gate) che annullerà eventuali fenomeni di oscillazione smorzate (overshoot o ringing) che diversamente si produrrebbero a causa delle induttanze dei collegamenti del circuito del carico. Infine, siccome la resistenza interna del circuito di comando è bassa, i singoli transistori non potranno interferire tra di loro.

Per "abbattere" l'energia immagazzinata nell'induttanza dei collegamenti del circuito in cui si trova il carico si è provveduto a collegare tra i terminali di drain e di source dei transistori una rete RC la cui capacità avrà il valore di $10~\mu F$ e la relativa resistenza in serie dovrà essere formata da due resistori in parallelo da 100~m Ω ciascuno. Non è assolutamente necessario collegare una siffatta rete ai capi del drain e della source di ciascun transistore: per tutti i 50~transistori in parallelo saranno sufficienti soltanto 20~treti RC nelle quali $R=20~x~2,2~\Omega$ e $C=20~x~0,47~\mu F$.

La figura 2 dà un'idea di come potrebbe essere realizzato il circuito di pi-

Tabella 1 - Componenti per la realizzazione dell'ir	nterruttore statico
Componenti	Codice per l'ordinazione alla Siemens
50 Transistori di potenza SIPMOS BUZ 23 20 condensatori MKT 0.47 μF/100 Vdc 5 condensatori MKT 10 μF/100 Vdc 1 condensatore elettrolitico 1000 μF/100 Vdc	C67078-A1310-A2 B32561-D1474-J B32231-A1106-K B41455-N9108-T

Tabella 2 - Componenti per la realizzazione del circui	per la realizzazione del circuito di comando	
Componenti	Codice per l'ordinazione alla Siemens	
1 hex inverter CMOS (sei invertitori in parallelo)4049 1 foto accoppiatore IL 101	Q67100-H980-F6 Q68000-A5702- F114	
1 regolatore di tensione TDB 7808T 1 transistore PNP al silicio BD 355	Q67000-A1054 Q62702-D1137	
1 transistore NPN al silicio BD 357 1 diodo di commutazione al silicio BAW 76	Q62702-D1140 Q62702-A397	
3 condensatori MKT 0.47 μ F/100 Vdc 1 condensatore MKT 3.3 μ F/100 Vdc 2 condensatori elettrolitici in alluminio 47 μ F/25 Vdc	B32561-D1474-J B32563-D1335-J B41326-A7476-V	
1 condensatore elettrolitico in alluminio 100 μF/16 Vdc	B41326-A4107-V	

lotaggio di questo interruttore statico di potenza.

Per essere sicuri che ai transistori SIPMOS venga sempre applicato un livello di segnale di comando tale da portarli sicuramente in conduzione, lo stadio finale di pilotaggio, strutturato in configurazione push-pull, viene alimentato con una tensione stabilizzata di 8 V.

Il pilotaggio dei transistori push-pull è effettuato da 6 invertitori CMOS collegati in parallelo. Per avere l'andamento richiesto, la tensione di comando di questo interruttore di potenza viene applicata agli ingressi degli invertitori CMOS tramite un fotoaccoppiatore.

I 50 transistori (in contenitore metallico TO-3) possono essere fissati mediante viti e dati su una piastra metallica opportunamente forata e disposti in 5 file con 10 forature. Il raffreddamento potrà essere effettuato facendo circolare tra i contenitori TO-3 un meandro di tubi nei quali verrà fatta scorrere acqua. Ovviamente, potrà essere utilizzato qualsiasi altro sistema di raffredda-

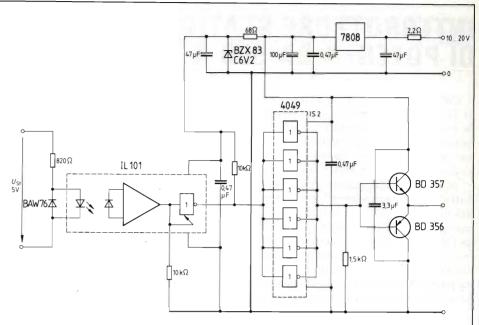


Fig. 2 - Circuito di comando proposto per l'interruttore statico di fig. 1.

mento forzato in grado di dare lo stesso risultato. La piastra di metallo sulla quale sono fissati i transistori funziona in questo caso da *collegamento comune di drain* dei transistori nei confronti del carico.

INTERRUTTORE DI CREPUSCOLO CON SENSIBILITA' DA 10 FINO A 104 LUX

Con il fototransistore BPY 62 III (Siemens) inserito in un circuito a ponte disposto all'ingresso dell'amplificatore operazionale di potenza TCA 365 (Siemens) è possibile realizzare un interruttore di crepuscolo avente una sensibilità regolabile tra 10 e 104 lux. Lo schema è riportato in figura 1. Il partitore di tensione, formato da due resistori da 10 kΩ, applicato all'ingresso non invertente dell'operazionale, stabilisce la soglia di commutazione di quest'ultimo su un valore pari a 1/2 Vs. e cioè a metà valore della tensione di alimentazione, che in questo caso è 12 V. La sensibilità di questo dispositivo può essere regolata mediante P1 (1 M Ω) e, come già detto, può andare da 10 fino a 104 lux. Quando la tensione fornita dal BPY 62 III è tale da risultare inferiore a quella della soglia di funzionamento dell'operazionale, quest'ultimo ecciterà il relé, che chiuderà il contatto del circuito esterno da aprire/chiudere. Il valore del resistore Ruserve a stabilire il valore dell'isteresi dell'interruttore di crepuscolo.

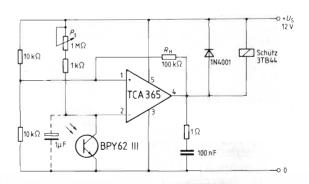


Fig. 1 - Schema dell'interruttore di crepuscolo. Il relé viene eccitato dall'operazionale quando la tensione fornita dal fototransistore (che dipende dall'illuminazione) diventerà inferiore a quella presente sull'ingresso non invertente dell'operazionale.

Componenti	Codice per ordinazione alla Siemens
amplificatore operazionale di potenza TCA 365	Q67000-A1875
diodo raddrizzatore al silicio 1N 4001	C66047-Z1306-A21
1 fototransistore BPY 62-III	Q60215-Y1112
1 condensatore MKT 100 nF/63 V.	B32509-D104-K
condensatore elettrolitico al tantalio 1 μF/40 V.	B45170-E4105-M

INTERRUTTORE STATICO 400 V/8 A, REALIZZATO CON IL C.I. UAA4002

Con l'integrato UAA4002 (Thomson-CSF) e il Darlington integrato ad alta tensione BUV 54 (Thomson-CSF) è possibile realizzare un interruttore statico compatto e con prestazioni elevate. Questo interruttore statico è capace di interrompere 8 A a 400 V.

In figura 1 è riportato lo schema elettrico. In questo circuito, l'integrato UAA4002 è utilizzato in maniera in tutto convenzionale (level control mode). La costante di tempo T è fissata a 2,8

 μ s. Questo tempo è 4 volte superiore alla costante di tempo della rete "snubber" associata al transistore BUV 54. Il positivo dello stadio finale dell'UAA4002 è collegato alla tensione di alimentazione Vcc mediante un resistore da 15 Ω . Il valore massimo della corrente di base è circa 0,45 A. La corrente di collettore viene misurata mediante uno shunt da 0,10 Ω e viene limitata al valore di 10 A. Ne consegue che il Darlington BUV 54, che prevede una

corrente di saturazione pari a Icsat = 12 A, viene a lavorare con un margine di sicurezza del tutto soddisfacente.

Il valore di dissipazione riportato accanto ai resistori come pure il valore della resistenza termica del dissipatore di calore sono puramente indicativi, in quanto il valore reale dipenderà in gran parte dalle particolari condizioni in cui lavorerà l'interruttore statico (e cioè temperatura ambiente, frequenza di commutazione, valore del ciclo di utilizzazione).

In questa applicazione non vengono utilizzate alcune funzioni incorporate nell'integrato come la funzione di disabilitazione, di ritardo di tempo, di monitoraggio della tensione di alimentazione negativa e del valore di ton max.

In figura 2 si può vedere l'andamento delle correnti rispettivamente di collettore e di base del BUV 54 nel caso il carico sia di natura induttiva (0,35 mH).

L'ampiezza della corrente positiva di base è molto più bassa della corrente di base negativa. Questo si spiega per il fatto che, in questo caso, viene commutato un Darlington: la corrente di base positiva è infatti quella del transistore pilota del Darlington integrato; la corrente negativa è invece quella del transistore di potenza integrato nel Darlington.

Questa corrente circola attraverso un diodo collegato in testa-coda alla giunzione base-emettitore del transistore pilota

La figura 3 riporta le stesse correnti

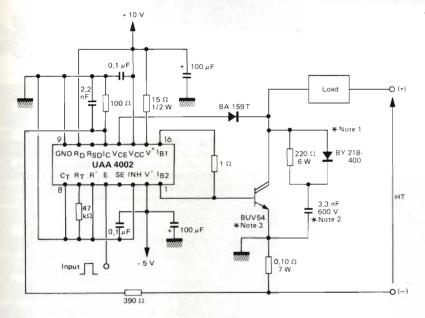


Fig. 1 - Schema dell'interruttore statico 8 A / 400 V comandato dal circuito integrato UAA4002. Per l'interruttore statico viene utilizzato il Darlington BUV 54.

Nota 1: Rete RC che agevola la commutazione del transistore.

Nota 2: Condensatore in polipropilene.

Nota 3: È previsto un dissipatore di calore con resistenza termica $RTH < 3.5^{\circ}/W$.

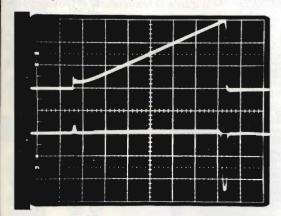


Fig. 2 - Oscillogrammi riguardanti la corrente di base e di collettore del BUV 54 in caso di carico induttivo. In alto: corrente di collettore del BUV 54 (2 A/div). In basso: corrente di base del BUV 54 (1 A/div). Base dei tempi: 2 \(\nu_8/div\).

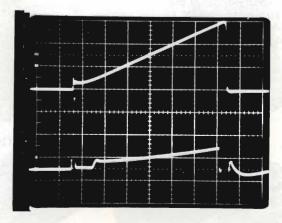


Fig. 3 - In alto: corrente di collettore del BUV 54 (2 A/div). In basso: corrente di base die BUV 54 (0,1 A/div).

IDEE DI PROGETTO

ma con maggiore sensibilità per ciò che riguarda la corrente di base. Questo oscillogramma dimostra con evidenza la relazione proporzionale intercorrente tra la corrente di base e la corrente di collettore del transistore di potenza. Ovviamente, la componente negativa della corrente di base si trova al difuori del bordo dell'oscillogramma riportato nella figura. La figura 4 indica l'andamento delle forme d'onda che si hanno durante la fase di bloccaggio del transistore. Il tempo di caduta della corrente di collettore (tr) si aggira intorno ai 100 ns.

A richiesta la redazione può fornire il layout del rame del circuito stampato di questo modulo (esclusa naturalmente la sezione di potenza e cioè il Darlington).

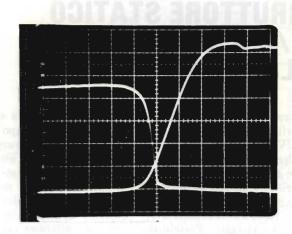
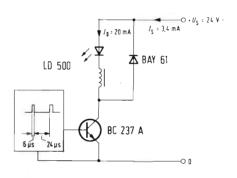



Fig. 4 - Corrente di collettore e tensione emettitore/collettore del BUV 54 in fase di bloccaggio. Corrente di collettore: 1 A/div.
Tensione emettitore-collettore: 50 V/div.

CIRCUITO DI COMANDO DI UN LED ALIMENTATO A 24 V

Molto spesso è disponibile in un'apparecchiatura soltanto una tensione di alimentazione relativamente elevata. In questi casi, la tensione di alimentazione viene applicata al LED tramite un resistore in serie. Questo sistema comporta ovviamente una notevole dissipazione. Questo inconveniente può essere eliminato ricorrendo al circuito di figura 1 il quale è formato dal transistore BC237 (Siemens) che funziona da interruttore, e il cui terminale di collettore è collegato a un choke, e

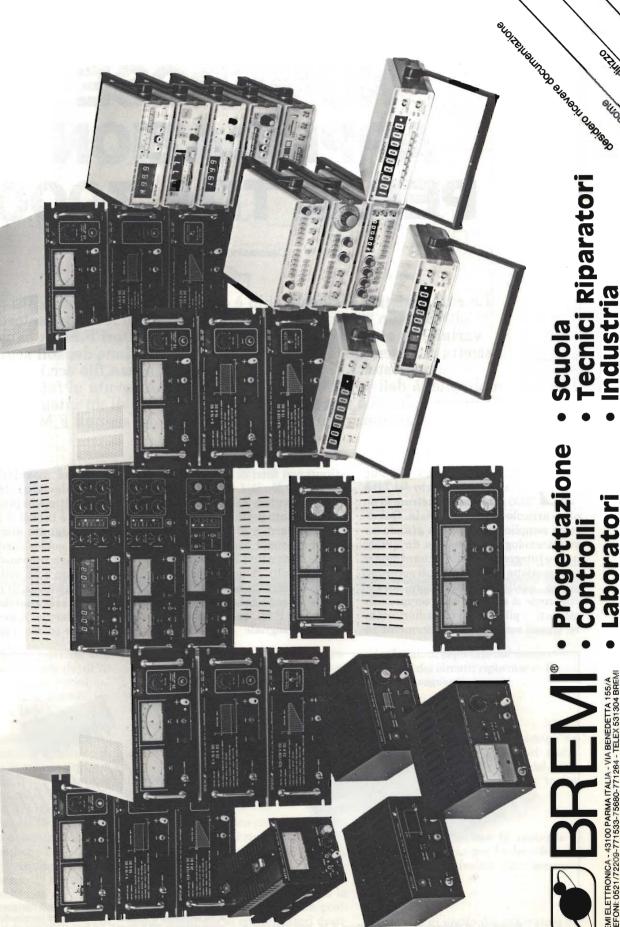
Base dei tempi: 100 ns/div.

Tabella 1 - Componenti utilizzati e loro codici		
Componenti	Codice di ordinazione alla Siemens	
1 Transistore al silicio BC 237 A	Q62702-C276	
1 diodo a luminescenza LD 500	Q62703-Q817	
1 diodo di commutazione BAY 61	Q62702-A389	
1 Choke RF 3,3 mH	B78108-S1335-J	

Fig. 1 - Schema del circuito di alimentazione di un LED mediante una tensione a 24 V. Questo circuito di adattamento è a basse perdite. Via via che aumenta la tensione di alimentazione la durata dell'impulso di comando (in questo caso 6 µs) tenderà a diminuire.

ovviamente al LED e alla tensione di alimentazione "elevata" (Vs = 24 V).

Per avere nel LED una costante circolazione di corrente che risulti indipendente dal valore della tensione di alimentazione Vs, occorre che il ciclo di utilizzazione (6 µs su 24 µs) risulti proporzionale a Vs. Ciò significa, in altre parole che via via che aumenta la tensione di alimentazione, il tempo durante il quale il transistore si trova in conduzione dovrà essere sempre più breve. Nell'esempio riportato, l'assorbimento di corrente per una corrente media nel LED di 20 mA, è solo 3,4 mA.


Prezzo promozionale valido sino al 31.3.84 esecuzione con uscita analogica

L. 2.495.000

+IVA

professionalità & prezzo

Alimentatori stabilizzati professionali • Generatori di barre a colori per TV • Frequenzimetri digitali • Generatori di funzioni • Generatori d'impulsi • Capacimetri • Multimetri digitali Induttanzimetri

Laboratori Controlli BREMI ELETTRONICA - 43100 PARMA ITALIA - VIA BENEDETTA 155/A TELEFONI: 0521/72209-771533-75680-771264 - TELEX 531304 BREMI

Scuola **Progettazione**

Tecnici Riparatori Industria

NUMEROSE APPLICAZIONI PER IL TDA 7000

di L. Cascianini, Philips S.p.A.

La caratteristica di questo chip è quella di consentire di realizzare oltre che un miniricevitore F.M. con sintonia a condensatore variabile o a varicap, anche altri tipi di ricevitori F.M., a banda stretta per esempio, e pertanto adatti alla ricezione dei soli segnali audio (sistemi di ricezione CB, telefoni senza filo ecc.). La molteplicità delle applicazioni del TDA 7000 è dovuta al fatto che per la prima volta si è riusciti ad integrare nel chip di un integrato tutte le funzioni richieste per la ricezione dei segnali F.M..

e funzioni contenute nel chip del circuito integrato del TDA 7000 sono state illustrate in un altro articolo di questa rivista. Qui diremo semplicemente che la grande novità tecnologica introdotta da questo nuovo integrato è quella riguardante la soppressione di tutti i circuiti accordati (salvo quello dell'oscillatore locale) che, come si sa, sono stati sempre considerati "i pilastri" di un radioricevitore. Questi sono stati semplicemente so-

stituiti con filtri di frequenza intermedia attivi. E ciò è potuto avvenire in quanto il valore della frequenza intermedia è stato portato da 10,7 MHz (valore standard) a 70 kHz, un valore questo che poteva essere "trattato" mediante filtri attivi (e cioè amplificatori operazionali). A questo punto però si andava incontro ad un altro inconveniente: è noto infatti che in una trasmissione F.M., quando il segnale modulante (segnale audio) imprime la massima modulazione alla portante, esso fa deviare la frequenza centrale di quest'ultima in più o in meno di 75 kHz. Questo è infatti il Δ f standard massimo assegnato alle trasmissioni F.M.. Stando così le cose, anche il segnale a frequenza intermedia (i.f.) di un radioricevitore F.M. vedrà variare il suo valore centrale (o di riposo) nella misura di \pm 75 kHz quando capitano i picchi di modulazione. È evidente allora che un segnale (come quello della frequenza

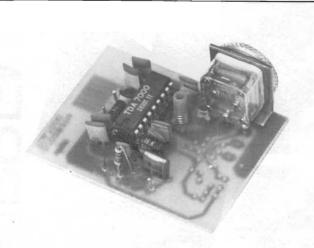
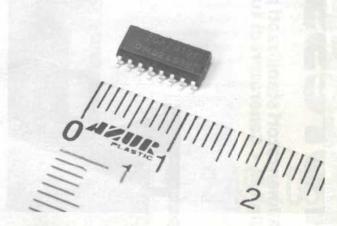



Fig. 1 - Prototipo di laboratorio del ricevitore F.M. con sintonia a condensatore variabile.

II TDA 7000 viene fornito in due versioni: con contenitore plastico DIL a 18 terminali e in contenitore S0 a 16 terminali; nel qual caso la sua sigla diventa TDA 7010T. La fotografia riporta questa versione ultraminiatura.

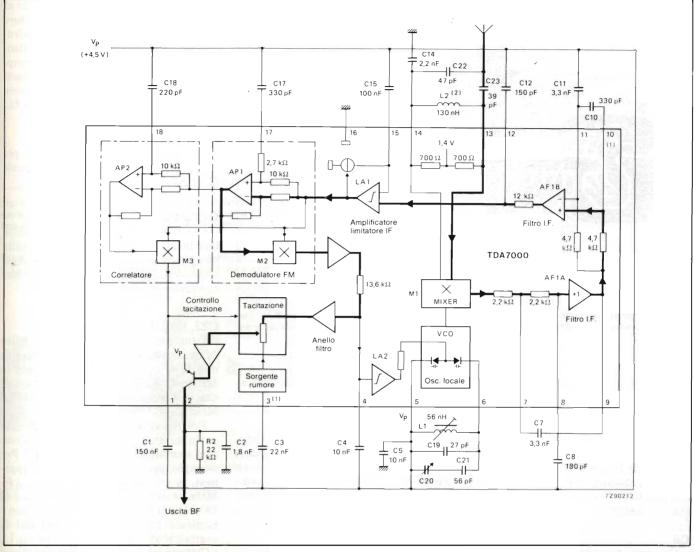


Fig. 2 - Schema elettrico del TDA 7000 e componenti esterni del ricevitore con sintonia a condensatore. 1) Questi terminali non vengono utilizzati nella versione in contenitore SO (TDA 7010T). AP = filtro passa-tutto. 2) Nel prototipo di laboratorio, fig. 1, la bobinetta L2 è ricavata dal rame dello stampato. L1 = Toko MC108 N. 514 HNE 150013S13. L1 = Toko N. 2A-15BT-R01.

intermedia del TDA 7000) avente una "frequenza di riposo" (o centrale) di 70 kHz, darà luogo a forti distorsioni nel segnale audio demodulato, quando varierà la sua frequenza in più o in meno di 75 kHz.

Nel TDA 7000, questo inconveniente è stato brillantemente aggirato in quanto, nonostante al trasmettitore si abbia un \$\Delta\$ fdi 75 kHz, il valore centrale del segnale a frequenza intermedia (che nel TDA 7000 è 70 kHz) varia soltanto in più o in meno di 15 kHz. E ciò, grazie ad un anello di controllo di frequenza in cui è compreso l'oscillatore locale (anello FLL, Frequency Locked Loop). Questo sistema di controllo è ampiamente illustrato nell'articolo citato. Qui vengono presentate alcune realizzazioni possibili mediante il TDA 7000, e precisamente:

- un ricevitore F.M. che utilizza per la

sintonizzazione il solito condensatore variabile oppure diodi a capacità variabile (diodi varicap);

un ricevitore F.M. a banda stretta;
 sistemi capaci di indicare una imperfetta sintonizzazione dell'emittente desiderata.

Ricevitore F.M. con sintonizzazione a condensatore variabile

Lo schema elettrico completo di questo ricevitore F.M. è riportato in figura 2; il prototipo di laboratorio in figura 1, la struttura del rame del circuito stampato in figura 3. Particolare attenzione è stata data alle piste che portano la tensione di alimentazione e alla posizione assegnata ai condensatori destinati al disaccoppiamento dei segnali forti. Le funzioni espletate dai componenti periferici del circuiti riportato in figura 2 sono le seguenti.

C1

Determina la costante di tempo necessaria affinchè i transitori audio, prodotti dal funzionamento del sistema FLL, vengano debitamente "tacitati".

C2

Assieme a R2 fissa la costante di tempo, necessaria per la de-enfasi del segnale audio rivelato (per esempio, $R2C2 = 40 \mu s$).

C3

Il livello di uscita del generatore del rumore durante la tacitazione tende ad aumentare all'aumentare del valore di

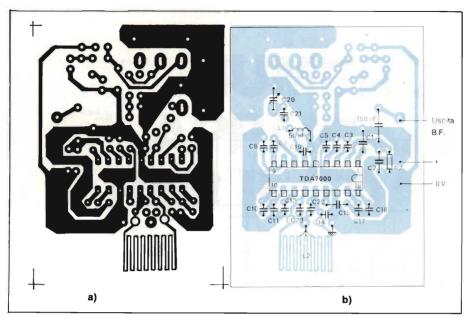


Fig. 3 - Struttura del rame del circuito stampato per la realizzazione del ricevitore F.M. con sintonia a condensatore variabile. (a) Stampato visto dalla parte del rame. (b) Visto dalla parte dei componenti.

C3. Se non si desidera la tacitazione, C3 può essere omesso.

C4

Condensatore richiesto dal filtro FLL. Elimina le armoniche i.f. all'uscita del modulatore F.M.. Serve anche a fissare la costante di tempo di chiusura dell'anello FLL, e influisce sulla risposta in frequenza.

C5

Condensatore di disaccoppiamento della tensione di alimentazione; deve

essere collegato più vicino possibile al terminale 5 del TDA 7000.

C7...C12, C17 e C18

Condensatori del filtro e del demodulatore. I valori indicati valgono per una i.f. di 70 kHz. Per valori di frequenza intermedia differenti occorrerà cambiare in maniera inversamente proporzionale alla variazione della i.f., i valori di questi condensatori.

C14

Disaccoppia un eventuale segnale

r.f. "inverso". Deve essere collegato al ritorno comune tramite un conduttore corto di buona qualità, e ciò per assicurare un "passaggio" a bassa impedenza del segnale. Occorre evitare accoppiamenti di natura induttiva o capacitiva fra C14 e il circuito dell'oscillatore locale o i componenti di uscita della f.i..

C15

Disaccoppia la reazione in c.c. per l'amplificatore/limitatore del segnale f.i. (LA1).

C19 e C21

Condensatori d'accordo dell'oscillatore locale. Il loro valore dipende dalla larghezza della banda entro in cui ci si vuole sintonizzare, e dal valore del condensatore di sintonia C20.

C22, C23, L1, L2

I valori indicati valgono per un filtro r.f. passa-banda avente un fattore di merito Q = 4, e capace di ricevere le emittenti F.M. della banda standard che, in Europa e negli USA, va da 87,5 MHz a 108 MHz.

Per ricevere emittenti F.M. allocate entro bande di valore differente occorrerà cambiare il valore di L1 e L2. Per esempio, per ricevere emittenti giapponesi, la cui banda va da 76 MHz a 91 MHz, occorrerà portare L1 al valore di 78 nH, e di L2 a 150 nH. Quando non è richiesta l'attenuazione stop-band di segnali F.M. o TV con elevati livelli, L2 e C22 possono essere omessi, e C23 portato al valore di 220 pF.

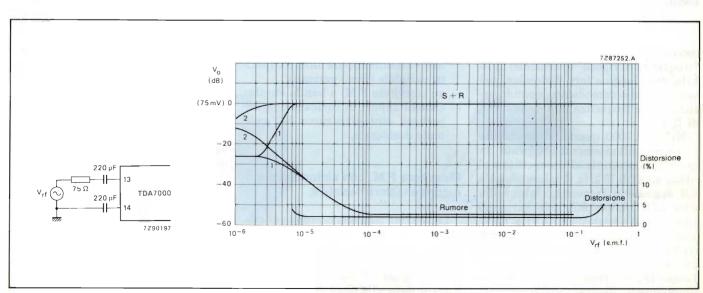


Fig. 4 - Segnale audio di uscita in funzione del segnale r.f. d'ingresso (e.m.f. = forza elettromotrice). Le curve contrassegnate con 1 vennero rilevate e misurate con il sistema di tacitazione in funzione. Le curve contrassegnate col numero 2 vennero invece misurate con il sistema di tacitazione messo fuori funzionamento mediante inlezione di circa 20 μA attraverso il terminale 1 del TDA 7000. Il segnale d'ingresso aveva la frequenza di 96 MHz ed era modulato con un segnale audio di 1 kHz. La deviazione di frequenza (Δ f) era ± 22,5 kHz per le curve del segnale audio di uscita, e ± 75 kHz per le curve che indicano la distorsione di terza armonica (THD).

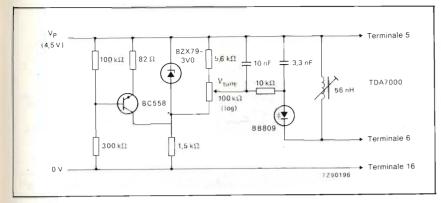
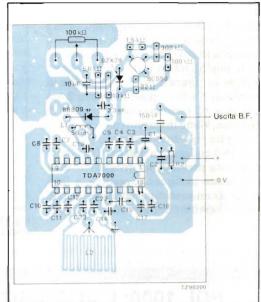



Fig. 5 - Circuito per la sintonizzazione dell'oscillatore locale mediante diodo a capacità variabile. Potranno essere richiesti circuiti aggiuntivi qualora il ricevitore dovesse presentare instabilità a causa di variazioni della temperatura.

Fig. 6 - Struttura del circuito stampato visto dalla parte dei componenti nel ricevitore di fig. 7. La struttura del rame dello stampato è identica a quella riportata in figura 3.

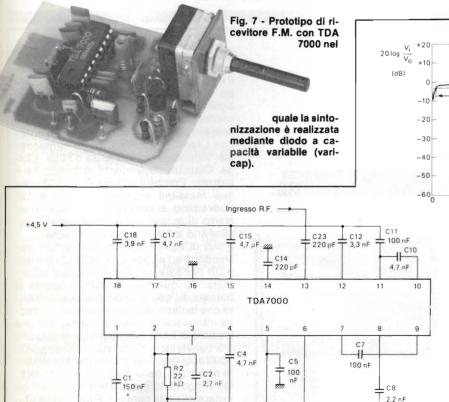


Fig. 8 - Ricevitore F.M. a banda stretta con oscillatore locale controllato a cristallo. Questo ricevitore F.M., è particolarmente adatto alla ricezione di segnali audio.

200 mV efficace

Uscita B.F.

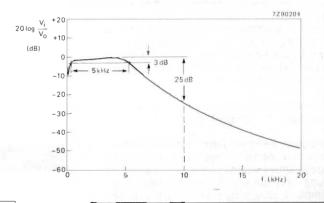


Fig. 9 - Curva di risposta (solo una metà) della 1.f. del ricevitore F.M. a banda stretta di figura 9.

R2

È il resistore di carico richiesto dalla "sorgente di corrente" di uscita audio dell'integrato. Determina l'ampiezza del segnale audio di uscita; il suo valore non può superare $22 k \Omega$ quando la tensione di alimentazione è $V_P = 4,5, V,$ oppure $47 k \Omega$ se $V_P = 9 V.$

In figura 4 sono riportate alcune curve riguardanti il funzionamento e la distorsione del segnale d'uscita del ricevitore descritto.

Ricevitore F.M. con sintonizzazione a diodo a capacità variabile

Si è detto che in un ricevitore F.M., realizzato con il TDA 7000, per sintonizzarsi sulle varie emittenti occorre soltanto variare l'accordo del circuito oscillante dell'oscillatore locale.

Ciò si effettua agendo sul condensatore variabile C20. Nulla vieta però che là variazione della capacità del circuito accordato dell'oscillatore possa essere attuata mediante un diodo a capacità variabile (diodo varicap). In questo caso, le modifiche da fare sono quelle riportate in figura 5 dove si vede che ai terminali 5 e 6, ai quali in figura 2 era collegato un condensatore variabile di sintonia, viene in questo caso collegato il circuito riportato in figura. (Il terminale 16 è collegato a massa). Il circuito stampato previsto per questa variante è riportato in figura 6, mentre la fotografia di un prototipo di laboratorio di questa versione si può vedere in figura 7

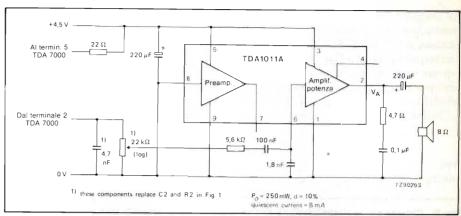


Fig. 10 - Stadio finale audio per TDA 7000 realizzato mediante il circuito integrato TDA 1011A (250 mW).

PDL 1000: L'ACQUISIZIONE DATI A SICUREZZA INTRINSECA

Con l'introduzione del PDL 1000, Philips ha integrato per la prima volta due concetti fondamentali nello stesso sistema: quello di sicurezza intrinseca e quello di acquisizione distribuita.

Funzionante anche in caso di taglio del cavo di collegamento

Nonostante le relative presentazioni affermino il contrario, in realtà la maggior parte degli attuali sistemi di acquisizione dati ha una configurazione centralizzata. Negli impianti dove sono richieste grandi quantità di punti di misura, questo si traduce quindi in costose architetture di collegamento ed in un basso livello di sicurezza. poichè ciascuna delle linee installate fra sensori ed unità centrale è soggetta a guasti. Ora, con l'introduzione del Process Data Line (PDL) 1000 Philips, è invece possibile realizzare in modo economico e sicuro l'acquisizione dei dati provenienti da fino a 1000 punti di misura, con una sola connessione quadripolare ad anello.

Dei convertitori di campo intrinsecamente sicuri digitalizzano i segnali di misura dei sensori e li trasferiscono sul bus di campo con una trasmissione a bit seriali, in multiplazione nel tempo. L'unità di controllo del bus riceve e memorizza i dati, rendendo quindi possibile una successiva utilizzazione in termini di elaborazione, di confronto con valori di riferimento o di semplice presentazione. Col PDL 1000, i dati di processo sono trasmessi rapidamente, con sicurezza ed in modo estemamente

preciso. Non solo. Se il cavo di trasmissione è anulare, il funzionamento non è interrotto da un'eventuale rottura.

Convertitori per tutti i sensori industriali

Il PDL 1000 opera con convertitori di campo a sicurezza intrinseca progettati per ogni tipo di sensore industriale. I valori di processo, come temperature, portate o pressioni, possono essere quindi misurati con i sensori più adatti, come termocoppie, termometri a resistenza o strain gauge. Ciascun convertitore di campo ha 8 ingressi. Poichè il sistema PDL 1000 nella sua massima espansione accetta 125 convertitori, è possibile realizzare un sistema di acquisizione dati capace di gestire fino a 1000 ingressi di misura.

Il bus di campo su cui i convertitori trasmettono ad altissima velocità i propri dati è un normale cavo quadripolare schermato. Su quest'ultimo sono disposte le barriere di linea, stazioni di accoppiamento che isolano le linee derivate, a sicurezza intrinseca, dal bus di campo. Ad una barriera di linea si possono collegare fino a 3 convertitori di campo. Il sistema PDL 1000 acquista così una struttura realmente distribuita, nella quale già nei convertitori vengono formattate le informazioni da inviare all'unità centrale. È perciò possibile scegliere il tipo di sensore più adatto a ciascuna applicazione, senza alcuna limitazione da parte del sistema.

Il bus di campo può avere una lunghezza massima di 5000 metri, mentre fra le barriere di linea ed i convertitori vi può essere una distanza massima di 100 metri.

Il PDL 1000 è competitivo, rispetto ai sistemi di acquisizione convenzionali, già a partire da 50 punti di misura.

Molte volte le edicole rimangono senza la nostra rivisi

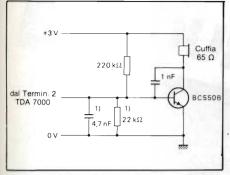


Fig. 11 - Stadio di uscita audio a transistore (0,4 mW). È sprovvisto del regolatore del volume ed è adatto per ricezione in cuffia.

Ricevitore F.M. a banda stretta

Il TDA 7000 può essere utilizzato anche per ricevere un segnale F.M. con banda passante ridotta. In questo caso, la frequenza dell'oscillatore locale viene controllata mediante quarzo, come riportato in figura 8, e di conseguenza, non potrà avere luogo la nota compressione della deviazione f.i. effettuata dal circuito FLL. (Vedi articolo: Ricevitore F.M. completo su chip).

Occorrerà quindi in questo caso limitare più che si può la deviazione della frequenza della portante trasmessa,

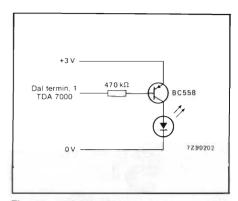


Fig. 12 - Indicatore di dissintonia comandato dal segnale di tacitazione fornito dal TDA 7000.

Tabella 1 - PRESTAZIONI DEL RICEVITORE F.M. (Salvo diversamente specificato $V_P=4,5$ V, $T_{amb}=25^\circ$ C, $f_{rf}=96$ MHz, $V_{rf}=1$ kHz. fornita da una sorgente a 75 Ω , modulata con Δ f = \pm 22,5 kHz, $f_{rm}=1$ kHz. Tensione di rumore misurata entro la banda compresa tra 300 Hz e 20 kHz.

Parametro		Simbolo	Unità di misura	
	sensibilità tensione f.e.m. per limitazione a — 3 dB tacitazione disabilitata per tacitazione — 3 dB per (S + N/N = 26 dB)	f.e.m. f.e.m. f.e.m.	1.5 μV 6 μV 5.5 μV	
-	segnale trattato (f.e.m.) per distorsione $<$ 10%; Δ f $=$ \pm 75 kHz rapporto segnale/disturbo (vedi fig. 4)	f.e.m. (S + D)/D	200 mV 60 dB	
	distorsione armonica totale (vedi fig. 4) con Δ f = \pm 22,5 kHz con Δ f = \pm 75 kHz	THD THD	0.7 % 2.3 %	
_	soppressione a.m. (rapporto tra segnale di uscita a.m. e segnale di uscita f.m.) segnale f.m.: fm = 1 kHz; Δ f = \pm 75 kHz segnale a.m.: fm = 1 kHz; m = 80%	AMS	50 dB	
Ť	reiezione ondulazione residua (ripple) (Δ V _P = 100 mV; f = 1 kHz	RR ⁻	10 dB	
-	tensione oscillatore (valore efficace) al terminale 6	V6 - 5 (eff.)	250 mV	
-	variazione della frequenza dell'oscillatore al variare della tensione di alimentazione (Δ $V_P=1$ V)	△ fosc	60 kHz/V	
	selettività	S + 300 S - 300	45 dB 35 dB	
_	campo del c.a.f.	∆ frt	± 300 kHz	
-	larghezza di banda dell'audio con Δ V $_{0}=3$ dB misurata con la preenfasi (t = 50 μ s)	В	10 kHz	
	tensione di uscita b.f. (valore efficace) con RL = 22 k Ω	Vo (eff.)	75 mV	
	resistenza di carico per la sorgente di corrente del segnale d'uscita audio con $V_P = 4,5 \text{ V}$ con $V_P = 9,0 \text{ V}$	RL RL	22 k Ω 47 k Ω	

prodotta dal segnale di modulazione; e ciò allo scopo di impedire che il segnale audio demodulato risulti fortemente distorto.

I valori dei componenti di figura 8 sono stati dimensionati per poter lavorare con un segnale di frequenza intermedia (i.f.) di 4,5 kHz e una larghezza di banda f.i. di 5 kHz (figura 9).

Se il valore della f.i. dovesse essere moltiplicato per un valore N, i valori dei condensatori C17 e C18 dei filtri passa-tutto, e i valori dei condensatori del filtro, e cioè C7, C8, C10, C11 e C12 dovrebbero essere "moltiplicati" per 1/N.

Per realizzare una migliore selettività del canale f.i. e ottenere una maggiore attenuazione dei canali adiacenti, al posto di C10 e C11 potranno essere utilizzate reti di secondo ordine.

In questo circuito non viene utilizzato il generatore di rumore di dissintonia. Siccome questo ricevitore è destinato à ricevere principalmente segnali audio, per sopprimere eventuali armoniche del segnale f.i., converrà far passare l'uscita audio attraverso un filtro passa-basso Chebyshev.

Amplificatore audio e circuiti indicatori di imperfetta sintonia

Nelle figure 10 e 11 vengono proposti alcuni stadi amplificatori finali audio adatti ad essere impiegati con il TDA 7000. La figura 12 indica invece come il segnale di tacitazione può essere utilizzato per attivare un LED allo scopo di ottenere l'indicazione di imperfetta sintonizzazione dell'emittente che si desidera ricevere.

... e allora abbonatevi. Non perderete alcun numero!

a cura della Redazione

La "luce da ascoltare", la tecnologia del laser entrano in automobile.

Alla presenza di Mr. Joop Sinjou, ingegnere olandese inventore del sistema, è stato presentato a Milano, in anteprima per la stampa il 9 novembre 1983, il primo prototipo di Compact Disc per auto.

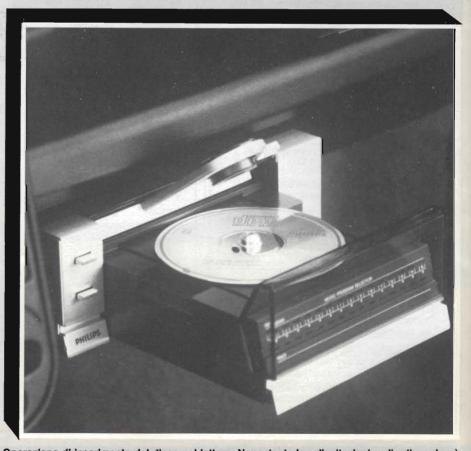
A poco più di un anno dal lancio in Italia di Compact Disc, Philips ha presentato il risultato delle sue ricerche tese a individuare nuove aree di applicazione del sistema.

Partner di eccezione è in questo caso Alfa Romeo; il Compact Disc è stato infatti montato su un'Alfa 33, vettura che al prestigio della sua marca unisce caratteristiche tecniche e di abitabilità di grande interesse. Le soluzioni stilistiche e il montaggio sono di Palber, una sigla che sta per Paolo Berra, firma autorevole del design automobilistico.

Tuttora in fase di prototipo e quindi suscettibile di ulteriori modifiche, il Compact Disc per auto segna una tappa fondamentale nello sviluppo dei sistemi Hi-Fi Car.

Di rilievo gli elementi tecnologici che ne caratterizzano la performance, come l'elevata qualità sonora, la durata e resistenza alle vibrazioni, la leggerezza e semplicità d'installazione e trasporto.

Anche nella versione per auto, il Compact Disc si compone di un apparecchio lettore e di un disco di 12 cm., inciso con la tecnica digitale e letto da un raggio laser.


Inciso su una sola facciata, suona per circa un'ora; è interessante - fra l'altro - ricordare che lo standard universale del sistema consentirà di sentire in auto i medesimi dischi ascoltati a casa.

Per le versioni definitive sono già allo studio varianti in dimensioni ridotte che agevolino l'installazione dell'apparecchio in qualsiasi tipo di vettura, e sistemi molto semplici di caricamento che consentano al guidatore di manovrarlo agevolmente e in condizioni di assoluta sicurezza.

Già in fase di prototipo, sono stati affrontati e risolti molti problemi legati al particolare utilizzo in auto; tra questi le vibrazioni e le sollecitazioni violente, le elevate temperature, ecc..

È bene ricordare comunque che Compact Disc sarà un componente tecnologicamente perfetto dell'impianto Hi-Fi Car e verrà installato - mediante un apposito ingresso ad alto livello - nell'apparecchiatura esistente.

Alle prestazioni di altissimo livello musicale, il Compact Disc per auto potrà aggiungerne innumerevoli altre; la capacità di memorizzare dati e informazioni con-

Operazione di inserimento del disco nel lettore. Nonostante le sollecitazioni e gli urti a cui può andare incontro l'apparecchio in fase di marcia della vettura, la lettura del disco avviene come se l'apparecchio si trovasse nella quiete di un salotto. Un sistema a microprocessore provvede infatti a riportare il raggio laser sulla pista che si sta leggendo tutte le volte che vibrazioni o frenate improvvise tentassero di spostario. Queste "correzioni di rotta" non sono comunque avvertite sull'audio dall'ascoltatore.

Il Compact Disc per auto ha fatto la sua prima apparizione sull'ALFA 33. Su questa macchina lo abbiamo infatti visto installato e funzionante in occasione della sua presentazione alla stampa italiana, il 9 novembre dell'anno ormai trascorso. A destra si può vedere il lettore del Compact Disc.

sentirà, per esempio, di riunire nel piccolo disco d'argento indicazioni stradali, percorsi turistici, ec..

Una prospettiva entusiasmante non solo per chi ama la buona musica ma anche per i milioni di guidatori che potranno disporre nella loro auto di un nuovo servizio per rendere il viaggio più sicuro e piace-

Nella versione definitiva il Compact Disc per auto verrà probabilmente immesso sul mercato alla fine del 1984.

Caratteristiche tecniche

Il Compact Disc per auto sarà un componente "d'avanguardia" dell'impianto Hi-Fi Car. Compact Disc può essere infatti inserito in tutti gli impianti Hi-Fi Car tradizionali.

Il prototipo di Compact Disc per auto comprende:

- un apparecchio lettore;
- un disco inciso con la tecnica digitale e letto per mezzo di un raggio laser.

Questi gli elementi più caratterizzanti del sistema:

- il suono

purissimo e limpido come mai si era ottenuto in auto con altri sistemi. La tecnica digitale assicura infatti la massima accuratezza e fedeltà nella riproduzione del segnale stereo. Totale è l'assenza di fruscii e rumori di fondo:

la dinamica

è molto elevata anche nel Compact Disc per auto, con netta separazione dei canali;

- il circuito di alimentazione il circuito di alimentazione è a 12 V, provenienti dalla batteria dell'auto.
- le dimensioni il particolare abitacolo richiede un apparecchio di dimensioni contenute e molto compatto. Il prototipo presentato misura cm 23 x 8.8 x 31.5;
- il caricamento e la manovrabilità il caricamento è, ovviamente, frontale e realizzato in modo da essere molto

agevole per il guidatore. I seguenti tasti di comando sono inseriti nel quadro frontale:

- FFW accesso al brano successivo
- RDW ritorno al brano precedente
- STOP
- EJECT
- PLAY:

autofocus

progettato già in origine prevedendo diverse applicazioni, il sistema impiegato nel Compact Disc per auto è il medesimo di quello impiegato nel Compact Disc domestico;

vibrazioni, temperatura

nella realizzazione del prototipo per auto, si sono dovuti affrontare diversi problemi legati alla particolare collocazione dell'apparecchio. Il sistema si è peraltro dimostrato perfetto e "inattaccabile" dalle rapide variazioni am-

Ovviamente, è bene ricordare che si tratta di un prototipo e che - come tale verrà ulteriormente messo a punto e perfezionato.

Il disco

Compact Discè un disco con un diametro di soli 12 centimetri.

Realizzato in polimetil-metacrilato, una sostanza purissima e trasparente, il disco incorpora nel suo interno uno strato di alluminio riflettente.

L'informazione audio è impressa sotto forma di minuscole cavità e per mezzo di un raggio laser incisore. In fase di riproduzione sarà ancora un raggio laser che funzionando come una vera e propria puntina immateriale - esplorerà il disco, leggendo l'informazione incisa all'interno e riflessa dallo strato di alluminio.

Nonostante le dimensioni ridotte, Compact Disc suona per circa un'ora. Da solo, questo dato può dare l'idea delle sue prestazioni eccezionali. Non esiste alcun contatto fra il sistema di lettura laser e il disco. Questo fa sì che vengano completamente eliminati i rumori di fondo, i fruscii, con purezza e fedeltà di riproduzione mai raggiunte prima d'ora.

La particolare tecnologia di incisione e lettura del suono per mezzo di raggio laser ha eliminato qualunque tipo di contatto con il disco. Si eliminano così, automaticamente, tutti gli effetti negativi derivanti da rigature, graffiature, impronte, polvere o dovute a manipolazioni poco accurate.

PROFILO DI MR. JOOP SINJOU

Mr. Sinjou ha iniziato la sua attività presso la Philips di Eindhoven come designer di apparecchiature audio (registratori ecc.); successivamente, si è occupato di progettazione e ha diretto il "Centro Pilota" presso la fabbrica Philips di apparecchiature Hi-Fi.

Ha contribuito in misura determinante alla evoluzione del progetto "videodisco". Come responabile della Direzione Sviluppo del settore Hi-Fi, nel 1975 ha iniziato con la sua èquipe a esplorare le possibilità di applicazione della tecnologia laser, arrivando in questo modo all'idea del Sistema Compact Disc che ha poi elaborato e perfezionato in tempi successivi.

Attualmente è responsabile dello sviluppo di Compact Disc e delle sue possibili applicazioni in diverse aree; un esempio concreto di questa evoluzione è rappresentato dal settore Hi-Fi Car, del quale Sinjou ha individuato la potenzialità e per il quale la sua équipe ha realizzato il prototipo di Compact Disc per auto.

A questi vantaggi se ne aggiungono due basilari sotto il profilo tecnologico: l'elevatissima dinamica e la netta separazione dei canali, che danno al suono una dimensione fino ad ora sconosciuta. Da

ultimo, certamente non trascurabile, il nuovissimo formato che in auto si rivela particolarmente pratico e non comporta problemi di spazio.

La Zanussi Elettronica riduce le perdite

La Zanussi Elettronica (TV di marca Seleco, Rex, Zoppas, ecc.) ha registrato nel 1982 un fatturato di 132,4 miliardi di lire (contro 95 miliardi nel 1981) e una perdita di 19,3 miliardi (31 nell'anno prima). La società, oggi confluita nella Seleco con le attività industriali per la televisione della Indesit, ha visto gli organici diminuire da 1932 a 1881 unità per un costo complessivo della voce "lavoro" pari a 29,6 miliardi. Gli oneri finanziari sono stati di 12,8 miliardi di lire.

TV semi-interattiva: l'esperienza del QUBE

a televisione bidirezionale o a due vie avanza, camminando, senza correre. In 5 anni di attività il Qube, il più noto servizio americano di TV interattiva, ha visto allacciarsi più di 50.000 utenti, numero non elevato ma formato da famiglie sparse in 7 grandi città. Il Sistema Qube della Warner Communication manca però di una importante funzione: il dialogo che il telespettatore può avere col mondo esterno è limitato allo studio televisivo e a "si/no", ottenuti tramite un pulsante sul suo telecomando che viene acceso o spento in risposta alle domande postegli sullo schermo o da un presentatore. L'assenza della "funzione visiva" (cioè il telespettatore ripreso da una telecamera) limita il sistema americano e la partecipazione dell'utente è ancora troppo passiva per poterla definire interattiva. Difatti il successo del Qube viene dalla altissima qualità dei programmi offerti ai suoi utenti, tramite l'allacciamento al sistema delle decine di Tv via cavo oggi presenti negli USA, oltre ai programmi offerti dalla Warner e ai servizi di prevenzione che sono integrati nel sistema (allarmi per fughe di gas, incendi, furti, ecc).

La Warner sta ri-cablando tutti i suoi utenti con cavi a fibre ottiche, sostituendo così i vecchi cavi coassiali, e ciò le permetterà

l'introduzione della "funzione visiva" per quando questa sarà richiesta dai suoi utenti.

106

orologio di macchina oscillante, ordinamento scillatore a battimenti illatore a quarzo oscillatore a rilassamento illatore di rilassamento a bloccaggio oscillatore quarzato oscillazione / oscillazione / a campo ritardante oscillazione pendolare oscillografo m oscillografo a raggi catodici oscilloscopio m ospite, calcolatore = ottale agg
ottale, cifra = ottetto m (byte composto da 8 bits) ottica delle fibre ottico agg ottimare

metodo

metodo di accesso seguenzial metodo di lettura metodo di Monte Carlo metodo di ordinamento metodo di programmazione metodo di registrazione metodo di ricerca metodo di riconoscimento empri metodo di trasmissione mettere a punto (un program a ecc) mezza parola mezzi m pl me770 # mezzo addizionatore mezzo di immagazzinamento mezzo di protezione dati mezzo fisico di trasmissione mezzo trasmissivo (hardware controllo della trasmissione = modulazione di frequer microcalcolatore m (calcolatore costruito interno ad un microprocesso generalmente completo di memoria e microcalcolatore, sistema a microcalcolatore su singola se heda microciclo m microcircuito n microcircuito integrato microcomputer m microcomputer, piastra di microcomputer didattico microcomputer single chip microcomputer su un unico clip microcontroller m microelaboratore m (raro) v. microelettronica f microfiche / microfilm m microfilm, uscita su ~ microfotogramma m microistruzione / microistruzione micrologica /

trasmettere

trasmettere i

micrologico LSI

microonde /

microoperazione

microplacchetta

niaturizzato, circuito

microplacchetta / (di un micro-computer) microprocessore (µP) m

microminiaturizzazione / micromodulo m

microprocessore a chip singe

trasmettere s trasmettere per telescrivente trasmettitore m trasmettitore sincrono trasmissione f (di dati ecc.) trasmissione f (di messaggi ec trasmissione, fattore di trasmissione, sistema di ~ trasmissione a banda laterale ni trasmissione a corrente di lavero trasmissione a corrente di rip trasmissione a più terminali trasmissione analogica trasmissione asincrona dei da trasmissione automatica trasmissione binario-sincron

trasmissione byte-seriale trasmissione circolare trasmissione datitrasmissione dati asincrona trasmissione dati in start-stop trasmissione dati sincrona trasmissione dati su canale unico trasmissione dati via cavo telefonico trasmissione dei dati trasmissione dei dati trasmissione dei dati trasmissione di dati trasmissione di immagini trasmissione di messaggi trasmissione diretta rasmissione diretta dei dati rasmissione in burst mode rasmissione in corrente continua rasmissione in fonia trasmissione in serie

msmissione in start stop

asmissione multipla

time-of-day clock (T.O.D.) oscillating sort oscillator n beat frequency oscillator quartz oscillator astable multivibrator blocking oscillator quartz oscillator oscillation n oscillation n retarding-field oscillation

hunting n (unstable condition)

oscillograph n

initialize v(tape etc.) initialize v (program) initialize, to ~ a volur

conversion

inizializzare v(programma) inizializzare un volume

inizializzare v(sistema) inizializzare v(nastro ecc.)

trasformazione f. conversione f

conversione di programmi istruzione di conversione

einleiten r

trasformazione f (di un impianto ecc.) Umrüstung f, Umstellung f

vorbereiten v

vorbereiten », etikettieren v

Umformung f, Umsetzung f Programmkonvertierung f

einen Datenträger einrichten, einen

conversion n (from old system to new conversion (of signals etc.)

spiazzabile indirizzamento relativo

codificaz lativa errore

rilascio m (di unità

JACKSON INC

relative Codierung

relativer Fehler

calcolatore a relais Relaisrechner m campo di accoppiamento relè liberare v, abilitare v (unità ecc.), rilasciare v (buffer ecc.)

Relaiskoppelfeld n freigeben v (Gerät, Puffer etc.)

relative Luftfeuchtigkeit, relative

L. 45.000 (Abb. L. 36.000) Zuverlässigkeit f. Berriebssicherheit

griffische grafische Einheit (normierte Koordin grafisches Datenverarbeitungssyster grafisches Symbol grafisches Terminal

for ione at the ione on the ione of the io kit pr Anweisung Inweisung / (zur Gerätebedienung etc. Inweisung / (bei problemorientierten Programmiersprachen) Anweisung f (bei maschinenorientierte Sprachen) Anweisung an das Programm An veisung in Primärsprache fiber ontics Umsetztabelle / Umsetzungstabelle optically readable ontimize i Umwandlungszeit f Mischsteilheit f assestamento trasconduttanza di conversione An veisung, arithmetische An veisung, ausführbare An veisung, nichtausführbare An veisung, symbolische ~ conversion transconductance conversion unit, converter n convertitore m, convertitrice f Umsetzer* m. Umwandler m. Konverter m sequential access method (SAM) convert v(data etc.) convertire v (dati, etc.) umsetzen v. umwandeln v reading method Monte-Carlo method sorting method veisung, unbedingte converter n see conversion uni veisung, zusammengesetzte ~ veisungsmarke / veisungsnummer / converter " rente) Stromrichter m
Parallel-Serien-Umsetzer (PSU)* m Serien-Parallel-Umsetzer vender m venderarbeitsbereich m DICTIONARY OF COMPUTER SCIENCE Kühlluftgebläse n venderdatei venderdater/ venderebene/ vendermakro m Koordinaten f pl Koordinierung / vendermaske / enderorientiert adi DIZIONARIO DI INFORMATICA n venderprogramm n n venderprogrammierung / Kopiergerät n venderschnittstelle / opieren v, duplizieren v endersoftware vendersoftware / (vom Anwender eschrieben) vendersysteme, dedizierte ~ oie f. Duplikat n. Zweitexemplar n WÖRTERBUCH DER INFORMATIK hschlag m (Kopie)
elfachungs-Funktion f
othalter m enderunterprogramm sequentielle Englisch Italienisch Deutsch n (elektr) entielle Steuerung Otto Volinha gnetkern etc.) entielle Struktur ientielle Verarbeitung Kernspeichermatrix f rentielle Zugriffsmethode rentieller Rechner sing steuerung / entieller Speicher micro entieller Zugriff microc integra uentiellrechner m uenz f (Sätze oder Zeichen) uenzspeicher m microcon didactic c single-chi, single-chip f, Bibliothek aldrucker m aldruckwerk* n amme Set e f
Set e, in ~
set ell adj (Obertragung etc.)
set ell adv GRUPPO microelectron de microfiche n PACKSON ell aufgebaut elle asynchrone Schnittstelle elle Binärübertragung elle Organisation microfilm / COM (compute microfilming n micro-image n elle Start-Stopp-Übertragung elle Synchronübertragung microinstruction elle Übertragung elle Verarbeitung elementary operat eller Betrieb' eller Datentransfer LSI chip eller Ein-/Ausgabekanal eller I/O-Port microcircuit / microminiaturization micromodule n eller Port eller Zugriff microwave n di registro di registro di registro di registro di ERMINI enabtas nabtastung / naddition / microoperation i printed circuit mothers microcomputer board microprocessor n istruzio enausgang m er rength, register capacity enbetrieb m regis endrucker m single-chip microprocesso Registerbezeichnung register name nome del reg eneingang m enmultiplikation / register save area area di salvataggio reg register save area
register select
register-to-memory architecture
register-type switching system selezione registro architettura registro/memoria Registerauswahl f
Register-zu-Speicher-Architektur f ennummer / en-Parallelbetrieb m sistema a registro Registersystem n en-Parallel-Schaltung / en-Parallelsystem n transmit reinitialize y see reinitiate send i en-Parallel-Umsetzer m en-Parallel-Umsetzung / reinitiate v, reinitialize v reinizializzare v neu einleiten, neu einrichten, neu teleprint v transmitter n vorbereiten zurückweisen v (allg.) rigettare v, respingere v reject enprogrammierung/ enrechner*m* reject v, select v, outsort v (card etc.) scartare v(schede), espellere v aussteuern v, zurückweisen v, synchro n rückweisen v Zurückweisung f, Rückweisung j (schede) transmission n enschaltung rigetto m, reiezione f reject n, rejection transmission n transmittance n enschnittstelle rejector n see parallel resonant circuit en-Serien-Betrieb m enspeicher m enspeicherung f reject pocket casella di scarto Restfach n. Fehlerfach n nication system Rückweisungsfach / single sideband transmission (SST) rekey v relation test immettere di nuovo (a tastiera) erneut eingeben Vergleich m open-circuit working closed-circuit operation entransfer m esame di confronto enübertragung / enverarbeitung / ice-Rechenzentrum n Sei relative adj relativo agg relativ adj broadcasting n relative address indirizzo relativo, indirizzo relative Adresse analog transmission asynchronous transmission automatic transmission binary synchronous communication ice-Techniker m relative addressing relative Adressierung

UNA PROPOSTA DEL GRUPPO EDITORIALE progra ne in relativo

start-stop data transmission synchronous data transmission single-channel data transmission telephone line transmission data traffic remote data transmission

(BSC)

release Pag. 920 transmiss Formato 18 release signal see enable signal Cod. lel 100 alti on-fine data transmission burst mode (transmission) burst-node (transmission) voice communication serial transmission start-stop transmission multiplex transmission reliability n

reliability, assessed reliability, hardware reliability, optimum

relay v see retransmi

relay calculator

matrix

relative coding

relative error

relay n

affidabilità f

relè m, relais m

afridabilità valutata affidabilità dell'hardware affidabilità ottimale, sicurezza di esercizio ottimale

geschätzte Zuverlässigkeit Hardware-Zuverlässigkeit / optimale Betriebssicherheit

grafische Lösung grafisches Ausgabegerät Grammatik / grammatische Analyse grammatischer Fehler Graph m Graphik... s. Grafik. graphisch adj s. grafisch Gray-Code m

omechanismus m

osystem n

Grenzfrequenz / Grenzpriorität /

Antivalenzgatter n Antivalenzglied n

Antriebskette /

Antriebsmotor m Antriebsregelung / (der

Magnetbandeinheit)
Antriebswelle f

Antwort /
Antwort des Operators

Antworten / Antwortsignal / Antwortzeit /

Antrieb m

antworten i

Anweisung*

Il disco

Compact Discè un disco con un diametro di soli 12 centimetri.

Realizzato in polimetil-metacrilato, una sostanza purissima e trasparente, il disco incorpora nel suo interno uno strato di alluminio riflettente.

L'informazione audio è impressa sotto forma di minuscole cavità e per mezzo di un raggio laser incisore. In fase di riproduzione sarà ancora un raggio laser che funzionando come una vera e propria puntina immateriale - esplorerà il disco, leggendo l'informazione incisa all'interno e riflessa dallo strato di alluminio.

Nonostante le dimensioni ridotte, Compact Disc suona per circa un'ora. Da solo, questo dato può dare l'idea delle sue prestazioni eccezionali. Non esiste alcun contatto fra il sistema di lettura laser e il disco. Questo fa sì che vengano completamente eliminati i rumori di fondo, i fruscii, con purezza e fedeltà di riproduzione mai raggiunte prima d'ora.

La particolare tecnologia di incisione e lettura del suono per mezzo di raggio laser ha eliminato qualunque tipo di contatto con il disco. Si eliminano così, automaticamente, tutti gli effetti negativi derivanti da rigature, graffiature, impronte, polvere o dovute a manipolazioni poco accurate.

PROFILO DI MR. JOOP SINJOU

Mr. Sinjou ha iniziato la sua attività presso la Philips di Eindhoven come designer di apparecchiature audio (registratori ecc.); successivamente, si è occupato di progettazione e ha diretto il "Centro Pilota" presso la fabbrica Philips di apparecchiature Hi-Fi.

Ha contribuito in misura determinante alla evoluzione del progetto "videodisco". Come responabile della Direzione Sviluppo del settore Hi-Fi, nel 1975 ha iniziato con la sua èquipe a esplorare le possibilità di applicazione della tecnologia laser, arrivando in questo modo all'idea del Sistema Compact Disc che ha poi elaborato e perfezionato in tempi successivi.

Attualmente è responsabile dello sviluppo di Compact Disc e delle sue possibili applicazioni in diverse aree; un esempio concreto di questa evoluzione è rappresentato dal settore Hi-Fi Car, del quale Sinjou ha individuato la potenzialità e per il quale la sua équipe ha realizzato il prototipo di Compact Disc per auto.

A questi vantaggi se ne aggiungono due basilari sotto il profilo tecnologico: l'elevatissima dinamica e la netta separazione dei canali, che danno al suono una dimensione fino ad ora sconosciuta. Da

ultimo, certamente non trascurabile, il nuovissimo formato che in auto si rivela particolarmente pratico e non comporta problemi di spazio.

La Zanussi Elettronica riduce le perdite

La Zanussi Elettronica (TV di marca Seleco, Rex, Zoppas, ecc.) ha registrato nel 1982 un fatturato di 132,4 miliardi di lire (contro 95 miliardi nel 1981) e una perdita di 19,3 miliardi (31 nell'anno prima). La società, oggi confluita nella Seleco con le attività industriali per la televisione della Indesit, ha visto gli organici diminuire da 1932 a 1881 unità per un costo complessivo della voce "lavoro" pari a 29,6 miliardi. Gli oneri finanziari sono stati di 12,8 miliardi di lire.

TV semi-interattiva: l'esperienza del QUBE

La televisione bidirezionale o a due vie avanza, camminando, senza correre. In 5 anni di attività il Qube, il più noto servizio americano di TV interattiva, ha visto allacciarsi più di 50.000 utenti, numero non elevato ma formato da famiglie sparse in 7 grandi città. Il Sistema Qube della Warner Communication manca però di una importante funzione: il dialogo che il telespettatore può avere col mondo esterno è limitato allo studio televisivo e a "si/no", ottenuti tramite un pulsante sul suo telecomando che viene acceso o spento in risposta alle domande postegli sullo schermo o da un presentatore. L'assenza della "funzione visiva" (cioè il telespettatore ripreso da una telecamera) limita il sistema americano e la partecipazione dell'utente è ancora troppo passiva per poterla definire interattiva. Difatti il successo del Qube viene dalla altissima qualità dei programmi offerti ai suoi utenti, tramite l'allacciamento al sistema delle decine di Tv via cavo oggi presenti negli USA, oltre ai programmi offerti dalla Warner e ai servizi di prevenzione che sono integrati nel sistema (allarmi per fughe di gas, incendi, furti, ecc). La Warner sta ri-cablando tutti i suoi utenti con cavi a fibre ottiche, sostituendo così i vecchi cavi coassiali, e ciò le permetterà

l'introduzione della "funzione visiva" per quando questa sarà richiesta dai suoi utenti.

orologio di macchina oscillante ordinamento oscillatore oscillatore a battimenti oscillatore a quarzo oscillatore a rilassamento oscillatore di rilassamento a bloccaggio oscillatore quarzato oscillazione / a campo ritardante oscillazione pendolare oscillografo m oscillografo a raggi catodici oscillogramma m oscilloscopio " ospite, calcolatore ottale, cifra attetta m(byte composto da 8 bits) ottica delle fibre ottico agg ottimare

metodo

metodo di lettura metodo di Monte Carlo metodo di ordinamento metodo di programmazione metodo di registrazione metodo di ricerca metodo di riconoscimento errori metodo di trasmissione mettere a punto (un programm a ecc)
mettere a punto in linea mezza parola mezzi in pl mezzo n nezzo addizionatore mezzo di immagazzinamento mezzo di protezione dati mezzo fisico di trasmissione mezzo trasmissivo (hardware controllo della trasmissione MF = modulazione di frequer microcalcolatore m (calcolatore costruito

metodo di accesso seguenzial

intorno ad un microprocesso generalmente completo di memoria e eriferiche) microcalcolatore, sistema a microcalcolatore monochip microcalcolatore su singola se heda microciclo m microcircuito m microcircuito integrato microcomputer m microcomputer, piastra di microcomputer didattico microcomputer single chip microcomputer su un unico clip microcontroller m microelaboratore m(raro) v. microprocessore microelettronica f

microistruzione micrologica / micrologico LSI microminiaturizzato, circuit microminiaturizzazione / microonde / microoperazione microplacchetta microplacchetta f (di un micro computer)
microprocessore (μP) m

microprocessore a chip singo

trasmettere

trasmettere

microfiche /

microfilm n

microfilm, uscita su ~ microfilmatura / microfotogramma m microistruzione /

trasmettere trasmettere per telescrivente trasmettitore m trasmettitore m trasmettitore sincrono trasmissione f (di dati ecc.)
trasmissione f (di messaggi ec trasmissione, fattore di trasmissione, sistema di ~ trasmissione a banda laterale trasmissione a corrente di lavero trasmissione a corrente di rip trasmissione a più terminali trasmissione analogica trasmissione asincrona dei da trasmissione automatica trasmissione binario-sincron

sione byte-seriale trasmissione circolare trasmissione datismissione dati asincrona trasmissione dati in start-stop trasmissione dati sincrona trasmissione dati su canale unico trasmissione dati via cavo telefonico trasmissione dei dati trasmissione dei dati a distanza trasmissione di dati trasmissione di immagin trasmissione di messaggi rasmissione diretta msmissione diretta dei dati trasmissione in burst mode trasmissione in corrente continua trasmissione in fonia msmissione in serie rasmissione in start stop rasmissione multipla

time-of-day clock (T.O.D.) oscillating sort oscillator n

beat frequency oscillator quartz oscillator astable multivibrator blocking oscillator quartz oscillator oscillation n retarding-field oscillation

conversion one etc.)

initialize v(tape etc.)

initialize v (program) initialize, to ~ a volum

conversion at from old system to new conversion (of signals etc.)

inizializzare v (sistema) inizializzare v (nastro ecc.)

inizializzare v (programma)

trasformazione f. conversione f

inizializzare un volume

einleiten v

trasformazione f (di un impianto ecc.) Umrüstung f, Umstellung f

vorbereiten :

vorbereiten v, etikettieren v

einen Datenträger einrichten, einen

conversion, program ~

immettere di nuovo (a tastiera) esame di confronto relativo agg indirizzo relativo, indirizzo spiazzabile indirizzamento relativo

codificazi lativa errore rela progra

Rückweisungsfach f erneut eingeben Vergleich m relativ adj relative Adresse

relative Adressierung relative Codierung relativer Fehler relative Luftfeuchtigkeit, relative

GRUPPO EDITORIALE JACKSON ...

relè m, relais m Relais* n calcolatore a relais Relaisrechner n campo di accoppiamento relè liberare v, abilitare v (unità ecc.), rilasciare v (buffer ecc.)

Relaiskoppelfeld n freigeben v (Gerät, Puffer etc.)

L. 45.000 (Abb. L. 36.000) Zuverlässigkeit f, Betriebssicherheit

geschätzte Zuverlässigkeit

grafische Einheit (normierte Koordin grafische Lösung grafisches Ausgabegerät grafisches Datenverarbeitungssysten grafisches Symbol grafisches Terminal Grammatik / grammatische Analyse grammatischer Fehler Graph m Graphik... s. Grafik. graphisch adjs. grafisch Gray-Code m Grenzfrequenz /

Umformung f, Umsetzung f hunting n (unstable condition) conversione di programmi rogra oscillograph n kit form lone retda us Vims pr a converge tetda us Vims oo e n alt fiber ontics conversion table, translation table Umsetztabelle f. Umsetzungstabelle optically readable ontimize v assestamento trasconduttanza di conversion Umwandlungszeit / conversion transconductance Mischsteilheit) conversion unit, converter in convertitore m, convertitrice I Umsetzer* m. Umwandler m. Konverter n sequential access method (SAM) convertire v (dati. etc.) convert v(data etc.) umsetzen v, umwandeln v reading method Monte-Carlo method sorting method converter n see conversion unit Stromrichter m converter " rente) Parallel-Serien-Umsetzer (PSU)* m Serien-Parallel-Umsetzer DICTIONARY OF COMPUTER SCIENCE Kühlluftgebläse n Koordinaten f pl Koordinierung f DIZIONARIO DI INFORMATICA Kopiergerät n pieren v, duplizieren v nie f. Duplikat n. Zweitexemplar n WÖRTERBUCH DER INFORMATIK hschlag m(Kopie) elfachungs-Funktion f othalter m 3n n Englisch Italienisch Deutsch n (elektr.) isystem n Otto Vollnhals gnetkern etc.) , Kernspeichermatrix f steuerung f micro integra aren Programme, temoduln microcol didactic c single-chi, single-chi; f. Bibliothek GRUPPO EDITORIALE JACKSON microelectroi microfiche n 3 microfilm a COM (compute microfilming # micro-image # microinstr elementary operat chip n LSI chip microcircuit / microminiatur micromodule microwave n microoperation / di registro 15.00 Ceg la ERMINI printed circuit mother microcomputer board microprocessor n registi single-chip microprocesso Registerbezeichnung register name nome del regis register save area area di salvataggio res selezione registro register save area
register select
register-to-memory architecture
register-type switching system Registerauswahl / architettura registro/memoria Register-zu-Speicher-Architektur f sistema a registro Registersystem n reinitialize y see reinitiate reinitiate v, reinitialize v reinizializzare v nes einleiten, neu einrichten, neu teleprint v transmitter n sender n vorbereiten zurückweisen v (allg.) rigettare v, respingere v reject scartare v(schede), espellere v reject v. select v. outsort v (card etc.) aussteuern v, zurückweisen v. synchro n rückweisen v Zurückweisung f, Rückweisung f (schede) transmission n rigetto m, reiezione f reject n, rejection transmission n transmittance n rejector n see parallel resonant circuit reject pocket casella di scarto Restfach n. Fehlerfach n. communication system single sideband transmission (SST)

UNA PROPOSTA DELing

asynchronous transmission synchronous data transmission single-channel data transmission telephone line transmission data traffic remote data transmission data transmission picture transmission message transmission

burst mode (transmission)

burst mode (transmission) in a tent transmission voice communication serial transmission start-stop transmission multiplex transmission

open-circuit working closed-circuit operation

analog transmission asynchronous transmission automatic transmission binary synchronous communication

broadcasting n

(BSC)

relay v see retransmit relay n relay calculator relay matrix

relation test

relative ad

relative address

relative coding

relative error

relative addressing

Pag. 920 transmiss Formato 18 release signal see enable signal Cod. 100 altred reliability "

> reliability, assessed reliability, hardware reliability, optimum

affidabilità f

afridabilità valutata affidabilità dell'hardware affidabilità ottimale, sicurezza di esercizio ottimale

f, rilascio m (di unità

Hardware-Zuverlässigkeit J optimale Betriebssicherheit

Antivalenzgatter n Antivalenzglied n

Antriebsmotor m Antriebsregelung / (der

Magnetbandeinheit)

Antriebswelle /
Antwort /
Antwort des Operators

Anweisung /
Inweisung f(zur Gerätebedienung etc.
Inweisung f(bei problemorientierten

Anweisung / (bei maschinenorientierte Sprachen) Anweisung an das Programm

Programmiersprachen)

All veisung in Primärsprache

eisung, symbolische

eisung, unbedingte

weisung, unbedingte weisung, zusammengese weisungsmarke f weisungsnummer f wender m wenderarbeitsbereich m venderdatei f

venderprogramm n venderprogrammierung /

vendersysteme, dedizierte

endersoftware f (vom Anwender

venderschnittstelle /

enderunterprogram

entielle Steuerung

entielle Verarbeitung

entieller Speicher

entieller Zugriff uentiellrechner m

uenzspeicher m aldrucker m aldruckwerk* n

ell aufgebaut

elle Übertragung elle Verarbeitung

eller Datentransfer eller Ein-/Ausgabekanal eller I/O-Port

eller Betrieb

eller Port eller Zugriff enabtastung / enaddition /

enausgang m enbetrieb m

ennummer /

enschaltung

enschnittstelle !

enspeicherung /

ice-Techniker m

mechanismus m

entransfer m

osystem n

or fische

endrucker m eneingang m enmultiplikation /

en-Parallelbetrieb m en-Parallel-Schaltung t en-Parallelsystem n en-Parallel-Umsetzer m

en-Parallel-Umsetzung

enprogrammierung / enrechner m

en-Serien-Betrieb m enspeicher m

enübertragung / enverarbeitung / ice-Rechenzentrum //

ser ell adv

ser ser ser

Se

Ser

Ser

Set

uentielle Zugriffsmethode entieller Rechner

ienz f (Sätze oder Zeichen)

i e f i e, in ~ ell *adj* (Übertragung etc.)

ell aufgebaut
elle asynchrone Schnittstelle
elle Binärübertragung
elle Organisation
elle Start-Stopp-Übertragung
elle Synchronübertragung

sequentielle

sequentielle Struktur

endersoftware

An venderebene / An vendermakro m

vendermaske / enderorientiert adi

veisung, arithmetische ~ veisung, ausführbare ~ veisung, nichtausführbare

engesetzte

Antwortmeldung /

Antwortsignal n

Antriebskette /

Antrieb m

antworten v

Anweisung*

Grenzpriorität /

Commutatori latching SPDT a microonde

La Dow-Key ha annunciato una serie di switch compatti a microonde caratterizzati da un funzionamento ad alte frequenze e a larga banda, e da capacità di switching ad alto isolamento in applicazioni quali ricevitori da satellite per apparecchiature RF di prova, collegamenti per telecomunicazioni a microonde, apparecchiature di supporto a terra, ECM e guerra elettronica.

Gli switch SPDT della serie 401 misurano solo 1,34" x 0,50" x 1,40" e sono disponibili con opzioni standard di montaggio che assicurano il massimo di flessibilità nel design di sistemi.

La serie 401, che risulta conforme alle specifiche Mil-S-3928, ha una configurazione break-before-make, con meccanismo attuatore bilanciato. Ciò garantisce un'eccellente tolleranza agli urti e alle vibrazioni.

I connettori SMA presentano un isolamento di 60÷85 dB dalla c.c. a 18 GHz. Le tensioni nominali della bobina sono 12 e 28 per ciascun tipo di switch; il tempo di funzionamento è 15 ms massimo

SIRCES Via Hajech, 10 Milano

Oscillatore quarzato

L'Oscilloquarz include fra la propria gamma di prodotti l'oscillatore quarzato di tipo "oven" mod. 8600.

Si tratta di un oscillatore termostatato ad alta stabilità, grazie anche alla tecnologia B.V.A., consistente in un particolare metodo di montaggio del quarzo risonatore che consente al medesimo di poter essere considerato virtualmente senza punti di appoggio dentro al proprio contenitore in atmosfera inerte; con tale sistema si ottiene lo scopo di far funzionare il cristallo con un fattore di merito elevatissimo rispetto ai sistemi convenzionali. Ne risulta un oscillatore standard con stabilità a lungo termine (aging) pari a 2 x 10⁻¹¹/giorno, in un campo di frequenze da 4 a 7 MHz.

Queste caratteristiche rendono il modello 8600 adatto all'impiego quale oscillatore di riferimento in apparati per telecomunicazioni, PCM, FDM, radar e anche come standard di laboratorio,

Oscillatore quarzato ad alta stabilità.

conseguendo una notevole economia rispetto agli equivalenti standard al rubidio.

Inoltre il mod. 8600 offre la possibilità di controllo e di aggiustamento fine della frequenza anche tramite una tensione esterna.

La gamma di temperatura di funzionamento va da $-30 a + 55^{\circ} C$.

Il segnale sinusoidale di 0,5 Vrms su 50 Ω è disponibile su due uscite disaccoppiate.

VIANELLO Via T. da Cazzaniga, 9/6 Milano

Transistori per alta frequenza

Tre transistori prodotti dalla Philips posseggono frequenze di transizione di 7,5 GHz e basse cifre di rumore a 2 GHz (dell'ordine di 2,5 dB).

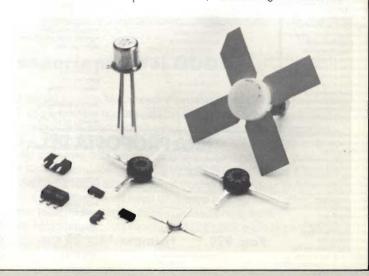
Questi transistori sono stati progettati per essere impiegati in sistemi di alta frequenza a larga banda fino a 1 GHz e per sistemi BDS (Direct Broadcast Satellite) fino a 2 GHz.

Il guadagno in corrente continua ha Il valore tipico di 100, e la corrente massima di collettore è 50 mA mentre la dissipazione di potenza può arrivare fino a 350 mW

II BFQ65 si presenta in un contenitore plastico a T (SOT-37), il BFQ66 è incapsulato in un contenitore micro-stripline a X, ermeticamente chiuso (SOT-173), ed infine il BFQ67 possiede un contenitore micro miniatura (SOT-23).

La metallizzazione a 3 strati assicura a questi transistori un ottimo comportamento alle varie temperatura di funzionamento ed un'eccellente affidabilità.

PHILIPS - Sez. Elcoma P.za IV Novembre, 3 Milano


LED ad alta potenza luminosa

La Optoelectronics Division della General Instruments ha introdotto un LED che fornisce in uscita una luce paragonabile a quella di una lampada ad incandescenza di 0,5 W e caratterizzato da una vita praticamente illimitata.

II LED è incapsulato nel package TI-3/4 ed è disponibile nelle versioni giallo ad alta efficienza in 2 gamme di intensità, da 25 e da 50 mcd.

Le applicazioni tipiche per questo prodotto riguardano l'illuminazione di aree di 1" quadro o maggiori.

I 2 LED chip sono collegati in serie inter-

Transistori per alta frequenza studiati per l'impiego in sistemi di alta frequenza a larga banda

namente ed alloggiati in un unico package per ottenere l'uscita elevata. Il package contiene una lente trasparente con riflettore di luce incorporato per ottenere un angolo di osservazione di 140°

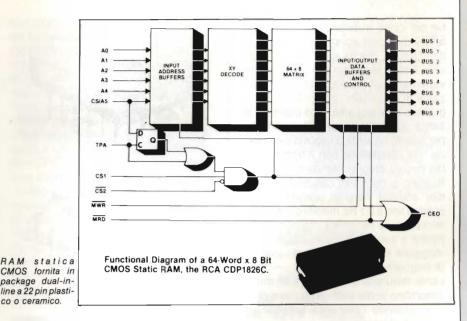
L'illuminatore è resistente ad urti e vibrazioni e può essere utilizzato dove una lampada ad incandescenza si potrebbe rivelare fragile. La sua vita prevista va da 100.000 a 1.000.000 di ore. I 4 modelli disponibili sono gli MK9150-1 (25 mcd) e MK9150-2 (50 mcd) rossi ad alta efficienza, ed MK9350-1 (25 mcd) e MK9350-2 (50 mcd) verdi ad alta efficienza.

GENERAL INSTRUMENTS Via Quintiliano, 27 Milano

Transistore da 250 W a 30 MHz

La Motorola ha introdotto nella sua gamma di componenti RF il transistore NPN MRF448, da 250 W, 30 MHz.

Il dispositivo è studiato per funzionare nella banda di 30 MHz con un'alimentazione di 50 V, e caratteristiche di guadagno di 14 dB tipici, 65% di efficienza e distorsione di intermodulazione di — 33 dB tipici.


MOTOROLA V.le Milanofiori - A1C Assago (MI)

RAM statica CMOS

È stata sviluppata dalla RCA Solid State una RAM statica veloce particolarmente adatta per i sistemi basati sul microprocessore CDP1800 o per altre applicazioni basate su microprocessori che richiedono un numero minimo di componenti e il funzionamento semplice di una RAM statica CMOS.

Organizzata in 64 parole di 8 bit, la CDP1826C si interfaccia con qualsiasi microprocessore CMOS CDP1800 senza decodifica degli indirizzi aggiuntiva; l'espansione del sistema di memoria è semplificata dai due ingressi di chipselect della 1826C.

La memoria ha 8 linee di ingresso e uscita dati comuni, tutte con capacità three-state. Ciò consente di collegare il chip direttamente a un bus dei dati bidirezionale standard.

Il tempo di accesso tipico è di 500 ns. Il chip funziona in uno dei 3 modi: read, write o deselect. Nell'ultimo modo il dispositivo può ridurre il consumo a valori di assorbimenti di corrente da standby. I dati vengono mantenuti con tensioni di alimentazione che possono scendere fino a 2 V.

La CDP1826C funziona con una alimentazione singola compresa fra 4,5 e 6,5 e non occorre alcun clock o precarica.

Viene fornita in package dual-in-line a 22 pin plastico o ceramico ermetico, per i range di temperatura da — 40 a 85° C e da — 55 a 125° C rispettivamente.

RCA P.za San Marco, 1 Milano

Limitatori IF a larga banda

La RHG Electronics Laboratory ha aggiunto i modelli ICSL16040 standard e ICUL16040 miniatura alla sua linea di limitatori IF a circuiti integrati.

Entrambi i modelli funzionano a 160 MHz di frequenza, hanno una larghezza di banda di 40 MHz e un'uscita nominale di + 10 dBm.

Le unità sono progettate per funzionare sia con segnali CW che ad impulsi. Uno stadio di uscita buffer elimina gli errori dovuti alla variazione del carico.

Le specifiche dei due limitatori com-

Limitatori IF a larga banda progettati per funzionare sia con segnali CW che ad impulsi.

prendono: range dinamico da -70 a -5 dBm, shift di fase di 10° , variazione della potenza di uscita di 0.5 dBm, cifra di rumore di 10 dB, VSWR di 1.5:1, campo di temperatura di funzionamento da -40 a 70° C.

MOTORDIESEL Via Manzoni, 5 La Spezia

Microfono su chip

La Honeywell ha sviluppato un processo per realizzare con l'ossido di zinco microfoni acustici e microelettronica su singoli substrati di silicio. Il "microfono su chip" offre elevati livelli di prestazioni, sensibilità ed affidabilità con una frazio-

Commutatori latching SPDT a microonde

La Dow-Key ha annunciato una serie di switch compatti a microonde caratterizzati da un funzionamento ad alte frequenze e a larga banda, e da capacità di switching ad alto isolamento in applicazioni quali ricevitori da satellite per apparecchiature RF di prova, collegamenti per telecomunicazioni a microonde, apparecchiature di supporto a terra, ECM e guerra elettronica.

Gli switch SPDT della serie 401 misurano solo 1,34" x 0,50" x 1,40" e sono disponibili con opzioni standard di montaggio che assicurano il massimo di flessibilità nel design di sistemi.

La serie 401, che risulta conforme alle specifiche Mil-S-3928, ha una configurazione break-before-make, con meccanismo attuatore bilanciato. Ciò garantisce un'eccellente tolleranza agli urti e alle vibrazioni.

I connettori SMA presentano un isolamento di 60÷85 dB dalla c.c. a 18 GHz. Le tensioni nominali della bobina sono 12 e 28 per ciascun tipo di switch; il tempo di funzionamento è 15 ms massimo.

SIRCES Via Hajech, 10 Milano

Oscillatore quarzato

L'Oscilloquarz include fra la propria gamma di prodotti l'oscillatore quarzato di tipo "oven" mod. 8600.

Si tratta di un oscillatore termostatato ad alta stabilità, grazie anche alla tecnologia B.V.A., consistente in un particolare metodo di montaggio del quarzo risonatore che consente al medesimo di poter essere considerato virtualmente senza punti di appoggio dentro al proprio contenitore in atmosfera inerte; con tale sistema si ottiene lo scopo di far funzionare il cristallo con un fattore di merito elevatissimo rispetto ai sistemi convenzionali. Ne risulta un oscillatore standard con stabilità a lungo termine (aging) pari a 2 x 10⁻¹¹/giorno, in un campo di frequenze da 4 a 7 MHz.

Queste caratteristiche rendono il modello 8600 adatto all'impiego quale oscillatore di riferimento in apparati per telecomunicazioni, PCM, FDM, radar e anche come standard di laboratorio,

Oscillatore quarzato ad alta stabilità.

conseguendo una notevole economia rispetto agli equivalenti standard al rubidio.

Inoltre il mod. 8600 offre la possibilità di controllo e di aggiustamento fine della frequenza anche tramite una tensione esterna.

La gamma di temperatura di funzionamento va da -30 a $+55^{\circ}$ C.

ll segnale sinusoidale di 0,5 Vrms su 50 Ω è disponibile su due uscite disaccoppiate.

VIANELLO Via T. da Cazzaniga, 9/6 Milano

Transistori per alta frequenza

Tre transistori prodotti dalla Philips posseggono frequenze di transizione di 7,5 GHz e basse cifre di rumore a 2 GHz (dell'ordine di 2,5 dB).

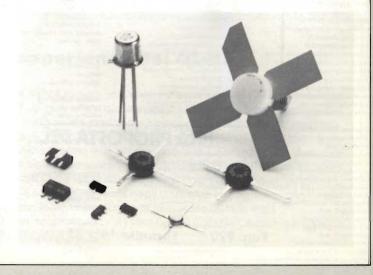
Questi transistori sono stati progettati per essere impiegati in sistemi di alta frequenza a larga banda fino a 1 GHz e per sistemi BDS (Direct Broadcast Satellite) fino a 2 GHz.

Il guadagno in corrente continua ha il valore tipico di 100, e la corrente massima di collettore è 50 mA mentre la dissipazione di potenza può arrivare fino a 350 mW.

II BFQ65 si presenta in un contenitore plastico a T (SOT-37), il BFQ66 è incapsulato in un contenitore micro-stripline a X, ermeticamente chiuso (SOT-173), ed infine il BFQ67 possiede un contenitore micro miniatura (SOT-23).

La metallizzazione a 3 strati assicura a questi transistori un ottimo comportamento alle varie temperatura di funzionamento ed un'eccellente affidabilità.

PHILIPS - Sez. Elcoma P.za IV Novembre, 3 Milano


LED ad alta potenza luminosa

La Optoelectronics Division della General Instruments ha introdotto un LED che fornisce in uscita una luce paragonabile a quella di una lampada ad incandescenza di 0,5 W e caratterizzato da una vita praticamente illimitata.

II LED è incapsulato nel package TI-3/4 ed è disponibile nelle versioni giallo ad alta efficienza in 2 gamme di intensità, da 25 e da 50 mcd.

Le applicazioni tipiche per questo prodotto riguardano l'illuminazione di aree di 1" quadro o maggiori.

I 2 LED chip sono collegati in serie inter-

Transistori per alta frequenza studiati per l'impiego in sistemi di alta frequenza a larga banda.

namente ed alloggiati in un unico package per ottenere l'uscita elevata. Il package contiene una lente trasparente con riflettore di luce incorporato per ottenere un angolo di osservazione di 140°

L'illuminatore è resistente ad urti e vibrazioni e può essere utilizzato dove una lampada ad incandescenza si potrebbe rivelare fragile. La sua vita prevista va da 100.000 a 1.000.000 di ore. 14 modelli disponibili sono gli MK9150-1 (25 mcd) e MK9150-2 (50 mcd) rossi ad alta efficienza, ed MK9350-1 (25 mcd) e MK9350-2 (50 mcd) verdi ad alta efficienza.

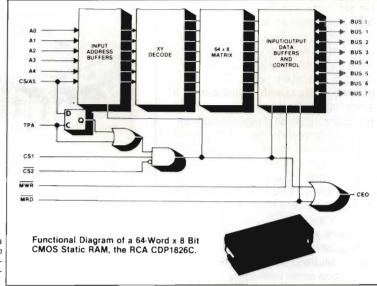
GENERAL INSTRUMENTS Via Quintiliano, 27 Milano

Transistore da 250 W a 30 MHz

La Motorola ha introdotto nella sua gamma di componenti RF il transistore NPN MRF448, da 250 W, 30 MHz. Il dispositivo è studiato per funzionare nella banda di 30 MHz con un'alimenta-

zione di 50 V, e caratteristiche di guadagno di 14 dB tipici, 65% di efficienza e distorsione di intermodulazione di – 33 dB tipici.

MOTOROLA


V.le Milanoflori - A1C Assago (MI)

RAM statica CMOS

È stata sviluppata dalla RCA Solid State una RAM statica veloce particolarmente adatta per i sistemi basati sul microprocessore CDP1800 o per altre applicazioni basate su microprocessori che richiedono un numero minimo di componenti e il funzionamento semplice di una RAM statica CMOS.

Organizzata in 64 parole di 8 bit, la CDP1826C si interfaccia con qualsiasi microprocessore CMOS CDP1800 senza decodifica degli indirizzi aggiuntiva; l'espansione del sistema di memoria è semplificata dai due ingressi di chipselect della 1826C.

La memoria ha 8 linee di ingresso e uscita dati comuni, tutte con capacità three-state. Ciò consente di collegare il chip direttamente a un bus dei dati bidirezionale standard.

RAM statica CMOS fornita in package dual-inline a 22 pin plastico o ceramico.

Il tempo di accesso tipico è di 500 ns. Il chip funziona in uno dei 3 modi: read, write o deselect. Nell'ultimo modo il dispositivo può ridurre il consumo a valori di assorbimenti di corrente da standby. I dati vengono mantenuti con tensioni di alimentazione che possono scendere fino a 2 V.

La CDP1826C funziona con una alimentazione singola compresa fra 4,5 e 6,5 e non occorre alcun clock o precarica.

Viene fornita in package dual-in-line a 22 pin plastico o ceramico ermetico, per i range di temperatura da — 40 a 85° C e da — 55 a 125° C rispettivamente.

RCA P.za San Marco, 1 Milano

Limitatori IF a larga banda

La RHG Electronics Laboratory ha aggiunto i modelli ICSL16040 standard e ICUL16040 miniatura alla sua linea di limitatori IF a circuiti integrati.

Entrambi i modelli funzionano a 160 MHz di frequenza, hanno una larghezza di banda di 40 MHz e un'uscita nominale di + 10 dBm.

Le unità sono progettate per funzionare sia con segnali CW che ad impulsi. Uno stadio di uscita buffer elimina gli errori dovuti alla variazione del carico.

Le specifiche dei due limitatori com-

Limitatori IF a larga banda progettati per funzionare sia con segnali CW che ad impulsi.

prendono: range dinamico da — 70 a — 5 dBm, shift di fase di 10°, variazione della potenza di uscita di 0,5 dBm, cifra di rumore di 10 dB, VSWR di 1,5:1, campo di temperatura di funzionamento da — 40 a 70° C.

MOTORDIESEL Via Manzoni, 5 La Spezia

Microfono su chip

La Honeywell ha sviluppato un processo per realizzare con l'ossido di zinco microfoni acustici e microelettronica su singoli substrati di silicio. Il "microfono su chip" offre elevati livelli di prestazioni, sensibilità ed affidabilità con una frazio-

ne del costo e delle dimensioni degli attuali microfoni acustici ceramici.

Il microfono, che ha le dimensioni di un chip, è stato realizzato con un processo estremamente riproducibile che consente di depositare film sottili di ossido di zinco di alta qualità. Tale sostanza è simile alle ceramiche piezoelettriche per quanto riguarda la risposta elettronica, ma compatibile con il trattamento dei circuiti integrati standard.

Rispetto ai microfoni ceramici, i microfoni acustici integrati operano a frequenze fino a 0,1 Hz, mentre quelli ceramici perdono sensibilità intorno a 20 Hz. Inoltre i sensori integrati offrono una maggiore affidabilità in quanto si tratta di dispositivi allo stato solido.

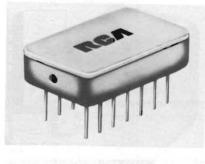
I chip misurano solo 6,25 x 6,25 mm e assorbono come elettronica meno di 40 mW, essendo l'elemento sensibile un dispositivo passivo.

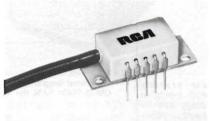
Il microfono su chip può rilevare un microbar di pressione, con un rapporto segnale/disturbo dell'ordine di 5 : 1.

HONEYWELL Via V. Pisani, 13 Milano

Laser allo stato solido

Due moduli laser cw-operated injection e una serie di fotodiodi preamplificatori a transimpedenza a lunga lunghezza d'onda sono stati introdotti dalla RCA Electro-Optics e Devices Division.


Questi dispositivi sono stati progettati specificatamente per i sistemi di comunicazione a fibre ottiche.

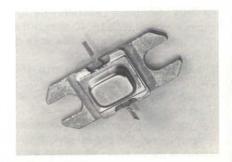

Il C86041E è un laser cw all'arseniuro di gallio-alluminio con una lunghezza d'onda di uscita di 820 nm, che consente un adattamento perfetto con la lunghezza d'onda dei fotodiodi al silicio.

Il C86042E è un laser cw all'arseniurofosfuro di indio-gallio con una lunghezza d'onda di uscita di 1300 nm, che ben si adatta alla lunghezza d'onda dei fotodiodi InGaAs/InP.

Entrambi i tipi sono dotati di un cavo a fibre ottiche lungo 0,5 m, accoppiato internamente alla regione di emissione del laser chip.

Entrambi i laser sono incapsulati in un package dual-in-line speciale, in modo da avere un facile montaggio e una buona capacità di dissipazione termica. Il package contiene anche un fotodiodo per il monitoraggio dell'uscita laser.

Laser allo stato solido progettati specificatamente per i sistemi di comunicazione a fibre ottiche.


La serie C30986E è invece formata da fotodiodi InGaAsP (p-i-n) ad alta velocità con preamplificatore ibrido in un package dual-in-line a 14 pin.

I fotodiodi forniscono un'alta sensibilità nella risposta a lunghezze d'onda di 900 ÷ 1700 nm e vengono ottimizzati nella rivelazione di sorgenti operanti tra 1300 e 1550 nm.

RCA P.za San Marco, 1 Milano

FET da 6 W a 5,9 ÷ 6,4 GHz

Il transistore ad effetto di campo MPF 5964-6 prodotto dalla Microwave Semiconductor è in grado di fornire 6 W di potenza CW con un guadagno tipico di 6 dB nella banda di frequenza da 5,9 a 6,4 GHz.

Fet da 6 W disponibile in un package di metalloceramico ermeticamente sigillato.

Il dispositivo è adattato internamente ad un sistema a 50 Ω con un VSWR di ingresso e di uscita migliore di 2:1. Una potenza di uscita di + 37 dBm con un guadagno minimo di 5 dB è garantita su 50 Ω alle frequenze estreme di 5,9 e 6,4 GHz

Il FET è disponibile in un package di metallo-ceramica ermeticamente sigillato

MICROELIT Via P. Uccello, 8 Milano

PROM CMOS a fusibili da 16 K

La Harris ha introdotto la HM-6616, PROM CMOS a fusibili.

La HM-6616, con organizzazione 2K x 8, garantisce l'affidabilità a lungo termine dei dati immagazzinati, unitamente ad un'alta velocità e a una bassa potenza dissipata.

Il pinout compatibile con lo standard 2716 permette di migliorare le prestazioni di sistemi esistenti, quando sia richiesta una maggiore velocità (tempo di accesso di 120 ns) e basso consumo. La presenza di latch per gli indirizzi e la progettazione di tipo sincrono permettono di interfacciarla con la maggior parte dei bus multiplexati, compreso naturalmente l'Harris 8086/80C86, riducendo al minimo il numero dei componenti necessari.

La HM-6616 utilizza il processo scaled SAJI IV. La corrente di alimentazione è di 100 μ A in stand-by e di 13 mA a 1 MHz. Ambedue i valori sono garantiti sulll'intero campo di temperatura, che può essere militare (– 55/+ 125° C) o industriale (– 40/+ 85° C). È anche disponibile una versione a specifica MIL-STD-883B.

La tecnologia utilizzata per l'immagazzinamento dei dati è quella dei fusibili in silicio policristallino, che garantisce l'assoluta non volatilità dei dati su un ampio campo di temperature.

La HM-6616 è disponibile in tre diversi contenitori: il ceramico standard da 24 pin tipo 2716 con spaziatura 0,6", una versione slimline con spaziatura 0,3" per applicazioni con alta densità, e il chip carrier (LCC) standard JEDEC a 32 pad.

HARRIS/MHS Semiconductor Sales Via F.III Gracchi, 48 Cinisello B. (MI)


Condensatore ad elettrolita solido

Il condensatore Tantalex tipo 774D è stato studiato dalla Sprague soprattutto per l'impiego nel campo delle telecomunicazioni, computer, apparecchiature audio e video di qualità, autoradio e autonica, dove necessitano alte prestazioni e basso costo.

Particolarmente buono è il comportamento per quel che riguarda la temperatura e l'umidità.

Il range di capacità del 774D va da 0,1 μF a 22 μF, con tensioni da 4 a 50 V, mentre il campo di temperatura di impiego va da – 55 a 125° C.

SPRAGUE ITALIANA Via G. De Castro, 4 Milano

Condensatore ad elettrolita solido che trova largo impiego nel campo delle telecomunicazioni, computer, apparecchiature audio e video, autoradio e autonica.

Optoisolatori a loop di corrente

La Hewlett-Packard ha introdotto due optoisolatori progettati specificatamente per sistemi a loop di corrente da 20 mA. Il trasmettitore HCPL-4100 e il ricevitore HCPL-4200 sono entrambi isolati otticamente e danno al progettista le funzioni complete di trasmissione e ricezione con specifiche garantite.

Questi due optoisolatori, HCPL-4100 e HCPL-4200, hanno il circuito del loop di corrente incorporato, consentendo perciò risparmio di spazio e facilità di progetto. I progetti convenzionali a loop di corrente da 20 mA dovrebbero fare uso di circa 10 componenti, per ottenere le stesse funzioni di trasmissione e di ricezione.

Altre caratteristiche sono: tensioni di soglia precise con isteresi, per un'alta immunità al rumore; elettronica isolata e alimentata dalla stessa corrente del loop; funzionamento a 19,2 kbaud e oltre; ingressi e uscite per dati compatibili con le logiche LSTTL e CMOS, senza, quindi, necessità di interfacce.

Nel trasmettitore HCPL-4100, il controllo del loop di corrente è affidato ad un circuito integrato al silicio, accoppiato otticamente ad un LED all'arseniuro di gallio, Il circuito integrato viene alimentato dalla corrente del loop, isolando il loop dal resto dell'apparecchiatura. Questo isolamento interrompe i loop di

massa, che possono causare guasti alle apparecchiature ed errori nei dati.
Anche il ricevitore HCPL-4200 è alimentato dal loop di corrente e isola otticamente la corrente di 20 mA dal circuito ricevitore.

L'uscita è compatibile con le logiche LSTTL e CMOS.

Uno schermo interno, in entrambi i dispositivi, dà una reiezione ai disturbi di modo comune di tipicamente 10000 $V/\mu s$ a 25° C. Sia le prestazioni in c.a. che in c.c. sono garantite tra 0 e 70° C. I due prodotti sono in contenitore plastico, del tipo dual-in-line a 8 piedini.

HEWLETT-PACKARD Via G. Di Vittorio, 9 Cernusco S/N (MI)

Regolatore di tensione negativa

IITDB 0137 prodotto dalla Thomson EF-CIS è un regolatore di tensione negativa regolabile a 3 terminali in grado di forni-re oltre — 1,5 A con una tensione di uscita compresa tra — 1,2 e — 37 V. Il coefficiente di regolazione in funzione della tensione di ingresso e della corrente del carico è migliore di quello dei

Regolatore di tensione negativa prodotto dalla Thomson-EFCIS denominato TDB 0137.

normali regolatori di tensione fissi. Inoltre il TDB 0137 è incapsulato in package da transistori standard e sono sufficienti due resistenze esterne per determinare la tensione regolata.

Il circuito è dotato di una protezione totale, comprendente la limitazione della corrente di uscita, la protezione termica e la protezione dell'area di sicureza.

Le sue caratteristiche comprendono: regolazione della linea di 0,01%/V, regolazione del carico dello 0,3%, reiezione del ripple di 77 dB, regolazione termica pari allo 0,002%/W.

THOMSON-CSF Componenti Via M. Giola, 72

RAM bipolare da 1024 x 1 bit ECL

Il dispositivo della Motorola, organizzato con 1024 parole di 1 bit, è progettato con una linea di ingresso dati separata, un'uscita dati non inverting, un chip select active-low.

La MCM10415/MCM10415A è progettata per essere utilizzata con memoria veloce in applicazioni scratch pad, in stadi di controllo, o in stadi di memoria buffer.

Il dato è letto o immagazzinato sul chip per mezzo di una decodifica di indirizzamento a 10 bit.

Per produrre la RAM è stata usata la tecnologia MOSAIC (Motorola Oxide Self-Aligned Implanted Circuit); questo processo fornisce una tecnologia di isolamento ad ossido, transistor impanted e due strati di metallizzazione.

Sia la progettazione delle singole celle che i materiali utilizzati per il contenitore forniscono una protezione alle particelle Alfa.

L'MCM10415/10415A è interamente compatibile con le famiglie logiche MCL 10K e 10KH e fornisce prestazioni più elevate ai progettisti che già usano la memoria MCM10416.

La nuova memoria è disponibile in contenitore dual-in-line à 16 pin.

La differenza principale tra lo standard e la versione "A" è che la versione "A" ha un tempo di accesso garantito di 15 ns max, rispetto ai 20 ns del tipo standard.

MOTOROLA V.ie Milanoflori - C2 Assago (MI)

STRUMENTAZIONE

Generatore di barre

Il generatore di barre di colore Bremi BRI 8300 è un apparecchio progettato per il service dei televisori a colori e in bianco e nero. Le uscite disponibili sono quelle del segnale RF, del segnale video e della sottoportante del colore.

Il segnale RF può essere generato in banda I, banda III e sulle VHF (canali 21 ÷ 69) ed è sintonizzabile in modo continuo all'interno di ciascuna banda.

Le funzioni generate, selezionabili con una tastiera, sono il reticolo di punti bianchi, il reticolo di linee verticali ed orizzontali, le barre di colore e singolarmente i 3 colori primari ed i 3 colori complementari.

I controlli effettuabili con il BRI 8300 coprono praticamente tutte le esigenze del riparatore TV permettendo tra l'altro la taratura e la verifica della convergenza statica e dinamica, della linearità orizzontale e verticale e della purezza del colore.

L'apparecchio è alimentabile a pile o batterie ricaricabili.

BREMI Via Benedetta, 155/A Parma

Oscilloscopio da 20 MHz

L'oscilloscopio CS 1022 della Trio-Kenwood è una versione rinnovata del CS 1566 AH, caratterizzato da una sensibilità di 1 mV/div.

Altre caratteristiche dell'oscilloscopio sono la base dei tempi regolabili in 20 passi, da 0,5 s/div a 0,2 µs/div e con la possibilità di ingrandire il segnale permettendo la facile misura di forme d'onda complesse, la posizione X-Y per il

Oscilloscopio CS 1022 della Trio in grado di fornire anche un'uscita con segnale proporzionale alle grandezze sotto misura.

La telecamera a colori K95, realizzata dalla Siemens in esecuzione compatta e con tre cinescopi di ripresa, fornisce immagini brillanti anche in condizioni di luce sfavorevoli.

controllo dello sfasamento tra due segnali o per analisi di bande passanti. Il trigger può essere manuale ed auto-

matico; le sorgenti di trigger possono essere i segnali presenti sul canale 1 o 2 oppure può essere sincronizzato con la linea o con un trigger esterno.

I segnali possono essere visualizzati singolarmente oppure si può ottenere la somma o la sottrazione dei valori dei due segnali, o possono essere visti contemporaneamente in modo alternato o chopperato (con frequenza interna di 250 kHz).

Lo strumento fornisce anche un'uscita con segnale proporzionale alle grandezze sotto misura.

VIANELLO Via T. da Cazzaniga, 9/6 Milano

Telecamera a colori per impieghi universali

La telecamera K95, realizzata dalla Siemens in esecuzione compatta e con 3 cinescopi di ripresa, è adatta per impieghi fissi e mobili, fornisce immagini brillanti anche quando le condizioni di illuminazione sono sfavorevoli, può essere manovrata con facilità e commutata rapidamente dalle riprese in studio a quelle esterne (o viceversa).

La telecamera può essere equipaggiata con diversi cinescopi di ripresa da 2/3" (Plumbicon, diode-Gun-Plumbicon, Pasecon e Chalnicon), intercambiabili senza dover smontare le unità di deflessione.

Sulla telecamera può venire installato, per riprese dal vivo, un monitor in bianco e nero da 4 o 12 cm (diagonale), in modo che la regia possa sovrapporre le immagini sullo schermo del mirino (commutazione esterna dell'immagine) e creare effetti speciali.

Poichè la telecamera ha incorporato un partitore prismatico con rapporto di apertura di 1:1,4, si possono impiegare obiettivi molto luminosi ed un amplificatore supplemenare di + 6 o + 12 dB. Il controllo ABC (Automatic Beam Control) consente di compensare ampiamente il prolungamento irregolare delle linee orizzontali e le sovraesposizioni dovute a punti luminosi presenti nella scena da riprendere.

La telecamera dispone di un generatore di impulsi Genlock che consente di sincronizzarla anche con un segnale di sincronizzazione esterno.

SIEMENS ELETTRA Via F. Filzi, 25/A Milano

STRUMENTAZIONE

Multimetri tascabili con scala analogica e digitale

I multimetri Fluke 73, 75 e 77 sono in grado di dare simultaneamente un'indicazione sia digitale che analogica del parametro misurato.

Adatti per essere tenuti nel palmo della mano, sono dotati di un display a 3 1/2 cifre e di un commutatore rotativo a 8 posizioni per la scelta delle funzioni. La lettura analogica del parametro, fornita da una barra luminosa articolata in una scala a 32 segmenti, viene aggiornata 25 volte al secondo, dieci volte più velocemente della lettura digitale del display a cristalli liquidi.

I multimetri della Serie 70 sono in grado di misurare valori di corrente fino a 10 A, tensioni alternate fino a 750 V, tensioni continue fino a 1000 V, e valori di resistenza fino a 32 M Ω .

Il Fluke 73 consente di fare misure in continua con una precisione dello 0,7% ed effettua automaticamente la scelta della portata.

Il Fluke 75 ha un precisione dello 0,5%, è munito di cicalino ed ha la possibilità

della scelta manuale o automatica delle portate.

Il Fluke 77 consente di eseguire misure con una precisione dello 0,3%, possiede tutte le caratteristiche del Fluke 75 ed ha in più la funzione "touch-hold".

SISTREL Via P. Da Volpedo, 59 Cinisello B. (MI)

Modulatore FM portatile

Si tratta del modello TRN 20 disponibile dalla DB Elettronica Telecomunicazioni

La potenza del modulatore è regolabile dall'esterno da 0 a 20 W.

Le caratteristiche principali dell'unità sono: frequenza 80 ÷ 108 MHz, il cambio di frequenza avviene con selezionatore numerico esterno, la stabilizzazione della frequenza è garantita da un quarzo, il rapporto FM S/N è maggiore di 56 dB.

Altre caratteristiche: alimentazione a batteria 12 Vcc, compressore microfonico incorporato, microfono dinamico in dotazione, strumento per la misura della Δ F e della potenza di uscita, attenuatore BF regolabile, ingresso micro e mixer.

DB ELETTRONICA TELECOMUNICAZIONI

Modulatore FM portatile la cui potenza è regolabile dall'esterno da 0 a 20 W.

OFF V. SOOMV or SOOMV

Multimetri tascabili Fluke 73, 75 e 77 con scala analogica e digitale.

Oscilloscopio a 100 MHz

Il PM 3267 della Philips è un potente oscilloscopio a doppia traccia a 100 MHz, che offre una vasta serie di prestazioni per l'uso in laboratorio e sul campo. È dotato di un terzo canale per l'osservazione del trigger, permette la visualizzazione alternativa delle basi dei tempi principale e ritardata e consente sofisticate funzioni di trigger ad alta frequenza.

Il campo dinamico è ampio, con sensibilità di ingresso variabile da 2 mV a 10 V per divisione; con l'uso di sonde attenuatrici standard si può estendere la sensibilità fino a 100 V per divisione.

Lo strumento fornisce un'immagine chiara, con piccole dimensioni del punto, sull'intera superficie dello schermo da 8 x 10 cm.

Il trigger automatico attivato da un solo pulsante riduce notevolmente i tempi di configurazione, aumentando l'ergonomicità

L'alimentatore è a doppio isolamento, per garantire una sicurezza addizionale. L'ampio campo dinamico e le versatili funzioni di trigger del PM 3267 lo rendono ideale per soddisfare le esigenze di strumentazione sofisticata, ma sempli-

STRUMENTAZIONE

ce da usare nei laboratori.

Un canale addizionale di osservazione del trigger permette di visualizzare contemporaneamente 3 segnali di ingresso, mentre la commutazione delle basi dei tempi permette di tempificare con precisione anche segnali complessi.

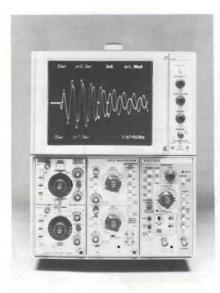
Anche le applicazioni sul campo risultano semplificate, grazie soprattutto alle dimensioni compatte e alla possibilità di alimentare lo strumento con una sorgente esterna a 24 Vcc.

Il PM 3267 offre un trigger molto flessibile. Per esempio, si può regolare il trigger sulla base dei tempi principale e ritardata in modo completamente indipendente. Un'altra possibilità è il trigger composto, mentre è standard il trigger TV con passaggio automatico da linea a quadro

Il trigger picco-picco automatico semplifica il funzionamento.

Un solo pulsante permette una visualizzazione stabile nell'intera ampiezza di banda. Un LED indica quando l'oscilloscopio ha effettuato il trigger.

Come opzione è disponibile il trigger automatico su livelli TTL o ECL.


PHILIPS V.le Elvezia, 2 Monza (MI)

Oscilloscopio a colori

La Tektronix ha ampliato con un modello a colori la sua linea di oscilloscopi a cassetti della serie 5000. L'unità adotta un display ad alta risoluzione che utilizza un otturatore per colore a cristalli liquidi denominato LCCS (Liquid Cristal Color Shutter).

L'oscilloscopio Tek 5116, con il cassetto digitalizzatore 5D10, è in grado di memorizzare transitori con componenti fino a 100 kHz, con acquisizione su singolo canale, e fino a 50 kHz su due canali. La risoluzione verticale è di 8 bit, con 1024 punti di campionamento su singolo canale o con 512 su due canali. La lettura digitale permette di eseguire misure sia di ampiezza che di tempo con la precisione dell'1%.

Nel Tek 5116 i segnali del canale 1 sono rappresentati in blu-verde e quelli del canale 2 in arancione. Le scritte alfanumeriche hanno lo stesso colore del canale a cui si riferiscono, mentre le misure in X-Y e quelle di tempo sono di colo-

Oscilloscopio a colori Tektronix mod. Tek 5116.

re neutro. Le scritte relative alle misure di tensione sono dello stesso colore del canale a cui si riferiscono.

Lo schermo a colori permette di ottenere la massima risoluzione verticale
quando si visualizza più di una traccia.
Utilizzando le capacità di differenziazione del colore, si possono visualizzare
due diverse forme d'onda a tutto schermo, sovrapporle e poterle ugualmente
esaminare senza confusione, mantenendo la massima risoluzione verticale
possibile su entrambi i canali.

TEKTRONIX Via Lampedusa, 13 Milano

Analizzatore di potenza multifunzione

L'AC/DC Power Analyzer D5135 realizzato dalla Norma consente di misurare grandezze in alternata, continua e miste

Analizzatore di potenza multifunzione D5135 realizzato dalla Norma capace di misurare grandezze in alternata, continua e miste qualunque sia la forma della curva. qualunque sia la forma della curva, nel range di frequenza da 0 a 100 kHz.

Misure contemporanee di corrente, tensione e potenza consentono di avere le relazioni anche tra quantità instabili. Con un singolo ciclo di misura si possono acquisire fino a 10 valori caratteristici

Facile da usare, il D5135 ha memorizzate le funzioni di test e di calibrazione, e una memoria CMOS RAM protegge i dati impostati e i valori misurati.

Lo strumento è dotato di interfaccia IEEE Standard 488 (IEC 625) e ha gli ingressi completamente protetti.

RICCARDO BEYERLE Via Monte San Genesio, 21 Milano

Generatore di segnali AM/FM

Il modello MSG-2520 Meguro della Bang & Olufsen Nederland è un generatore di segnali AM/FM modulare. Esso consiste di un telaio principale e di varie unità plug-in.

Due tipi di oscillatori plug-in coprono la banda AM e tre tipi la banda FM.

La frequenza portante è visualizzata su un contatore a 6 digit.

I moduli possono essere usati in qualsiasi combinazione per soddisfare le varie esigenze di test.

BANG & OLUFSEN NEDERLAND Measuring Instruments Div. Koninginneweg 54 1241 CV Kortenhoef (Olanda)

Multimetro RMS con indicazione della polarità

L'HPS RMS multimeter tipo 8701 della HPS System Technik è uno strumento ad alte prestazioni per la misura del vero valore efficace di tensioni e correnti qualunque sia la forma d'onda. Può altresì effettuare misure di tensione e correnti continue.

Il multimetro ha due scale lineari analogiche da 0 a 3 e da 0 a 10, undici range di misura e l'indicazione della polarità.

HPS System Technik Postf 101707 4300 Essen 1 (Germania)

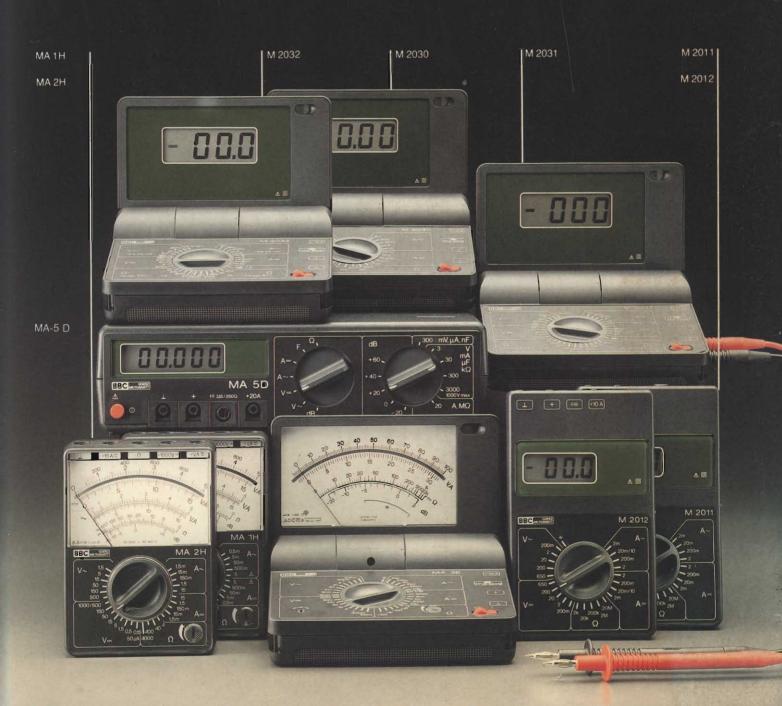
METRAWATT ITALIANA S.p.A. VIA F.LLI GRACCHI, 48 20092 CINISELLO B. (MI) TELEX 332479 METRA I TEL. 6121841 (5 LINEE R.A.)

Ditta	
Reparto/Persona	-
9.	1 10 10 10 10 10 10 10 10 10 10 10 10 10
Via	
Città	- 1
Desideriamo rio	cevere Vs. offerta per
Desideriamo ric	cevere Vs. offerta per:
Desideriamo rio	cevere Vs. offerta per:
Desideriamo rio	cevere Vs. offerta per:
Desideriamo rid	cevere Vs. offerta per :
Desideriamo rid	cevere Vs. offerta per
Desideriamo rid	cevere Vs. offerta per :
Desideriamo rio	cevere Vs. offerta per

Cartolina postale

METRAWATT ITALIANA S.p.A. Via F.IIi Gracchi, 48 20092 CINISELLO BALSAMO (MI)

- L			ROSE .								
Тіро	MA 1H	MA 2H	M 2011	M 2012	MA 3E	M 2030	M 2031	M 2032	MA 5D		
Indicazione	analogica		digitale		analogica	digitale					
Portate											
Tensione	0,15 1000 V-/1,5500 V-		200 mV650 V≔		100 mV1000V=	200 mV650 V⇒		300 mV1000V=			
Corrente	50μA5A- 0,5 mA5A -	50μA15A— 1,5 mA15A ~	2 mA2A=	2 mA10(20)A=	= 10µA10 A≔	2 mA 10 (20) A==		300μA20(30)A=			
Resistenza	1 Ω.,	. 1 ΜΩ	2 k()	.20 MΩ	1Ω20 ΜΩ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3kΩ20 MΩ		
Livello	- 15 + 56 dB			_	- 40 + 62 dB	_		_	- 60 + 80 dB		
Capacità	2200 000μF		_	_	_		_	_	300 nF300μF		
Temperatura	−25+125°C con Sonda per temperatura T 2001										
Resistenza d'ingresso Ri	20 kΩ/V-,4 kΩ/V∽		10 MΩ (cost.)								
Precisione per analogico: Classe digitale: errore base ± (% v.m.) + digit Ω	-31	kl 2,5	(0,51,25) + 1E (1,51,75) + 3E (0,752) + 1D	(11,5) + 3D	KI. 1,5 KI. 2,5 KI. 1,5	(0,51	5) + 1D) + 3D 2) + 1D	(0,10,5) + 1D (0,751,25 + 3D (0,352) + 1D	(0,050,35) + 1D (0,250,5) + 2DD (0,20,5) + 2D		
Campo di frequenza	355000 Hz		154000 Hz		155000 Hz				1520000 Hz		
Protezione contro sovracc.	protezione equipaggio su misura in tutte					in tutte le portate fino a 250 V≔ (per al <mark>cune anche oltre</mark>)					
Indicazione	bobina mobile-magnete centrale		LCD, 3½ cifre		equip. a bob. mob.	LCD, 31/2 cifre		LCD, 4½ cifre			
Lungh. scala/digits per valore di f.s.	83 mm 1999		999	101 mm	1999			29 998			
Alimentazione	1,5 V-Mignon IEC R 6		9 V-batteria piatta IEC 6 F 22						rete/batteria		
Dimensioni	92 x 126 x 45 mm		92 x 154 x 25 mm		146 x 118 x 44 mm (a strumento chiuso)				250 x 83 x 210 mm		
Particolarità	scala a	boccole e cave specchio	costruzione p	eciali, con protezione contro contatti accidentali. Gli strumenti corrispondono alle norme VDE e I particolarmente angolo di lettura orientabile grazie alla tecnica costruttiva a conchiglia prova diodi/prova continuità acustic				tiva a conchiglia continuità acustica	Boccole di misura con sistema per collegam. rapido o valore efficace		


Con riserva di eventuali modifiche.

La nuova linea di multimetri prestigiosi con indicazione analogica e digitale.

METRAWATT ITALIANA S.p.A. VIA F.LLI GRACCHI, 48 20092 CINISELLO B. (MI) TELEX 332479 METRA I TEL. 6121841 (5 LINEE R.A.)

Prestigio di tecnica, designi ed economicità

